DETERMININGTHE HIGGS SPIN AND PARITY USING GLUON POLARIZATION
 Wilco den Dunnen

arXiv: I 304.2654
Daniel Boer, Cristian Pisano and Marc Schlegel
twayneopans
UNIVERSITAT TUBINGEN

HIGGS JP DETERMINATION

	postive parity	negative parity		
spin-0	0^{+}	0^{-}		
spin-1	\times	\times		
spin-2	2_{m}^{+}	$2_{h}^{+} 2_{h^{+}}^{+} 2_{h^{\prime \prime}}^{+}$	$2^{-\bar{h}}$	
:---				

HIGGS JP DETERMINATION

di-photon

ZZ* ${ }^{*}$ 4|

HIGGS JP DETERMINATION

di-photon

$$
Z Z^{*} \rightarrow 4 \mid
$$

PR D8I, 075022 (2010)

HIGGS JP DETERMINATION

$Z Z^{*} \rightarrow 4 \mid$

HIGGS JP DETERMINATION

di-photon

WITH GLUON POLARIZATION

TMD FACTORIZATION

GENERAL STRUCTURE

PARTONIC AMPLITUDES

$$
=a_{1} q^{2} g^{\mu \nu}+a_{3} \epsilon^{p k \mu \nu}
$$

$$
=\frac{1}{2} c_{1} q^{2} g^{\mu \alpha} g^{\nu \beta}+\left[c_{2} q^{2} g^{\mu \nu}+c_{5} \epsilon^{p k \mu \nu}\right] \frac{(p-k)^{\alpha}(p-k)^{\beta}}{q^{2}}
$$

$$
\begin{array}{ccccccccc}
\text { scenario } & 0^{+} & 0^{-} & 2_{m}^{+} & 2_{h}^{+} & 2_{h^{\prime}}^{+} & 2_{h^{\prime \prime}}^{+} & 2_{h}^{-} \\
\hline \hline a_{1} & 1 & 0 & - & - & - & - & - \\
a_{3} & 0 & 1 & - & - & - & - & - \\
c_{1} & - & - & 1 & 0 & 1 & 1 & 0 \\
c_{2} & - & - & -\frac{1}{4} & 1 & 1 & -\frac{3}{2} & 0 \\
c_{5} & - & - & 0 & 0 & 0 & 0 & 1
\end{array}
$$

UNPOLARIZED DISTRIBUTION

$$
f_{1}^{g}\left(x, \boldsymbol{p}_{T}^{2}, \frac{3}{2} \sqrt{s}, M_{h}\right)=\frac{A_{0} M_{0}^{2}}{M_{0}^{2}+\boldsymbol{p}_{T}^{2}} \exp \left[-\frac{\boldsymbol{p}_{T}^{2}}{a \boldsymbol{p}_{T}^{2}+2 \sigma^{2}}\right]
$$

$$
\begin{array}{r}
\mathcal{C}[w f g] \equiv \int \mathrm{d}^{2} \boldsymbol{p}_{T} \int \mathrm{~d}^{2} \boldsymbol{k}_{T} \delta^{2}\left(\boldsymbol{p}_{T}+\boldsymbol{k}_{T}-\boldsymbol{q}_{T}\right) \\
w\left(\boldsymbol{p}_{T}, \boldsymbol{k}_{T}\right) f\left(x_{1}, \boldsymbol{p}_{T}^{2}\right) g\left(x_{2}, \boldsymbol{k}_{T}^{2}\right)
\end{array}
$$

$\mathrm{d} \sigma / \mathrm{dq}_{T}$ [arb. units]

POLARIZED DISTRIBUTION

$$
h_{1}^{\perp g}\left(x, \boldsymbol{p}_{T}, \zeta, \mu\right)=\mathcal{P}\left(x, \boldsymbol{p}_{T}^{2}, \zeta\right) \frac{2 M_{p}^{2}}{\boldsymbol{p}_{T}^{2}} f_{1}^{g}\left(x, \boldsymbol{p}_{T}, \zeta, \mu\right)
$$

$$
\Phi^{\mu \nu}\left(x, \boldsymbol{k}_{T}\right)=\frac{\int \mathrm{d}(\xi \cdot P) \mathrm{d}^{2} \xi_{T}}{(k \cdot n)^{2}(2 \pi)^{3}} e^{i k \cdot \xi} 2 \operatorname{Tr}_{c}\langle P| F^{n \nu}(0) \mathcal{U}_{[0, \xi]}^{[-]} F^{n \mu}(\xi) \mathcal{U}_{[\xi, 0]}^{[-]}|P\rangle
$$

DEGREE OF POLARIZATION

$$
h_{1}^{\perp g}\left(x, \boldsymbol{p}_{T}, \zeta, \mu\right)=\mathcal{P}\left(x, \boldsymbol{p}_{T}^{2}, \zeta\right) \frac{2 M_{p}^{2}}{\boldsymbol{p}_{T}^{2}} f_{1}^{g}\left(x, \boldsymbol{p}_{T}, \zeta, \mu\right),
$$

cose DISTRIBUTION

TRANSVERSE MOMENTUM DISTRIBUTION

Ф DISTRIBUTION

REMARKS

- gg->box-> Y Y background also φ dependent
- same can be done in the $\mathrm{H}->\mathrm{Z} Z^{*}$ channel

CONCLUSIONS

- gluon polarization modifies both qт and ϕ distribution
- qт distribution modification different for positive/ negative parity states
- ϕ distribution modification different for spin-2/spin-0
- ϕ distribution modification different for the various spin-2 coupling scenarios

