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Figure 3: Invariant mass distribution of diphoton candidates for the combined
√
s = 7 TeV and

√
s

= 8 TeV data samples. The result of a fit to the data of the sum of a signal component fixed to mH
= 126.8 GeV and a background component described by a fourth-order Bernstein polynomial is su-

perimposed. The bottom inset displays the residuals of the data with respect to the fitted background

component.

6 Systematic uncertainties

Most of the systematic uncertainties of this analysis are discussed in Ref. [6] and [13]. These will be

only briefly described and updated here, while new systematic uncertainties arising from the introduction

of additional categories will be adressed in more detail. All uncertainties are treated as fully correlated

between 7 and 8 TeV data except that on the luminosity. The uncertainties can affect the signal yield, the

signal resolution, the migration of events between categories and the mass measurement.

6.1 Uncertainties on the signal yield

The systematic uncertainties affecting the signal yield are the following:

• The uncertainty on the integrated luminosity is ±3.6% for the 8 TeV data. It is obtained, following
the same methodology as that detailed in Ref. [67], from a preliminary calibration of the luminos-

ity scale derived from beam-separation scans performed in April 2012. For the 7 TeV data this

uncertainty has been updated to 1.8%.

• The uncertainty on the trigger efficiency is 0.5% per event;

• The uncertainty on the photon identification efficiency for the 8 TeV analysis has decreased with
respect to Ref. [6]. It is based on the comparison of the efficiency obtained using MC and the

combination of data-driven measurements: extrapolation from Z → ee events, a method using
an inclusive photon sample and relying on a sideband technique, and radiative photons Z→ !!γ
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categorisation are used to extract information on the Higgs boson couplings (Section 6.4) and upper limits

on production cross sections (Section 6.5).

6.1 Signal and background estimates

In Table 6, the numbers of events observed in the inclusive analysis in each final state are summarised and

compared to the expected backgrounds, separately for 100 GeV< m4� < 160 GeV and m4� ≥ 160 GeV, for

the 20.7 fb
−1

at
√

s = 8 TeV and the 4.6 fb
−1

at
√

s = 7 TeV data sets as well as their combination. Table 7

presents the observed and expected events, in a window of ±5 GeV around a 125 GeV hypothesised Higgs

boson mass. The FSR correction discussed in Section 4.1 has affected seven of the 225 events with a

leading muon pair, with one event in the 120 to 130 GeV mass window. This is in good agreement

with the 4% expected from MC. Compared to Ref. [8], the background from ZZ
(∗)

production has been

reduced by around 15% in the 4µ and 4e modes due to the changes in the kinematic selection, and the

overall S/B has improved from 1.2 to 1.4, due to the improved electron identification.

The expected m4� distributions for the total background and one signal hypothesis are compared to

the combined
√

s = 8 TeV and
√

s = 7 TeV data in Fig. 4(a) for the range 80−170 GeV, and in Fig. 4(b)

for the mass range 170−900 GeV . Figure 5(a) shows the distribution of the m34 versus the m12 invariant

mass for the selected candidates in the m4� range 120 − 130 GeV, and Fig. 5(b) shows the distribution of

m4� versus m12 for the selected candidates with 90 GeV < m4� < 135 GeV for the combined data samples

at
√

s = 7 TeV and
√

s = 8 TeV. The expected distributions for a SM Higgs boson with mH = 125 GeV

and for the total background are superimposed on Figs. 5(a) and 5(b). All masses are calculated without

applying the Z-mass constraint. In Figure 6 the m4� mass distributions for each sub-channel (4µ, 2µ2e,

2e2µ, 4e) are shown in the range 80-170 GeV for the combined data at
√

s = 8 TeV and
√

s = 7 TeV.
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Figure 4: The distributions of the four-lepton invariant mass, m4�, for the selected candidates compared to

the background expectation for the combined
√

s = 8 TeV and
√

s = 7 TeV data sets in the mass range (a)

80 − 170 GeV and the high mass range (b) 170−900 GeV. The signal expectation for the mH=125 GeV

hypothesis is also shown. The resolution of the reconstructed Higgs boson mass is dominated by detector

resolution at low mH values and by the Higgs boson width at high mH .

Upper limits are set on the Higgs boson production cross section at 95% CL, using the CLS modified

frequentist formalism [83] with the profile likelihood ratio test statistic [84]. The test statistic is evaluated
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Motivated by this, we consider the production of a
resonance X at the LHC in gluon-gluon and quark-
antiquark partonic collisions, with the subsequent decay
of X into two Z bosons which, in turn, decay leptonically.
In Fig. 1, we show the decay chain X ! ZZ !
eþe"!þ!". However, our analysis is equally applicable
to any combination of decays Z ! eþe" or!þ!". It may
also be applicable to Z decays into " leptons since "’s from
Z decays will often be highly boosted and their decay
products collimated. We study how the spin and parity of
X, as well as information on its production and decay
mechanisms, can be extracted from angular distributions
of four leptons in the final state.

There are a few things that need to be noted. First, we
obviously assume that the resonance production and its
decays into four leptons are observed. Note that, because of
a relatively small branching fraction for leptonic Z decays,
this assumption implies a fairly large production cross
section for pp ! X and a fairly large branching fraction
for the decay X ! ZZ. As we already mentioned, there are
well-motivated scenarios of BSM physics where those
requirements are satisfied.

Second, having no bias towards any particular model of
BSM physics, we consider the most general couplings of
the particle X to relevant SM fields. This approach has to be
contrasted with typical studies of e.g. spin-two particles at
hadron colliders where such an exotic particle is often
identified with a massive graviton that couples to SM fields
through the energy-momentum tensor. We will refer to this
case as the ‘‘minimal coupling’’ of the spin-two particle to
SM fields.

The minimal coupling scenarios are well motivated
within particular models of new physics, but they are not

sufficiently general. For example, such a minimal coupling
may restrict partial waves that contribute to the production
and decay of a spin-two particle. Removing such restric-
tion opens an interesting possibility to understand the
couplings of a particle X to SM fields by means of partial
wave analyses, and we would like to set a stage for doing
that in this paper. To pursue this idea in detail, the most
general parameterization of the X coupling to SM fields is
required. Such parameterizations are known for spin-zero,
spin-one, and spin-two particles interacting with the SM
gauge bosons [7,8], and we use these parameterizations in
this paper. We also note that the model recently discussed
in Refs. [21–23] requires couplings beyond the minimal
case in order to produce longitudinal polarization
dominance.
Third, we note that while we concentrate on the decay

X ! ZZ ! lþ1 l
"
1 l

þ
2 l

"
2 , the technique discussed in this pa-

per is more general and can, in principle, be applied to final
states with jets and/or missing energy by studying such
processes as X ! ZZ ! lþl"jj, X ! WþW" ! lþ#jj,
etc. In contrast with pure leptonic final states, higher
statistics, larger backgrounds, and a worse angular resolu-
tion must be expected once final states with jets and miss-
ing energy are included. We plan to perform detailed
studies of these, more complicated final states, in the
future. However, we note that many results in this paper
are applicable to these final states as well.
The remainder of the paper is organized as follows: In

Sec. II, we describe the parameterization of production and
decay amplitudes that is employed in our analyses. In
Sec. III, we calculate helicity amplitudes for the decay of
a resonance into a pair of gauge bosons or into a fermion-
antifermion pair; helicity amplitudes for resonance pro-
duction are obtained by crossing. In Sec. IV, angular dis-
tributions for pp ! X ! ZZ ! f1 !f1f2 !f2 for resonances
with spins zero, one, and two are presented. This is fol-
lowed by detailed Monte Carlo simulation, which includes
all spin correlations and main experimental effects and
which is shown in Sec. V. Analysis using the multivariate
maximum likelihood technique is applied to several key
scenarios to illustrate separation power of different helicity
amplitudes for all spin hypotheses and in both production
and decay, as discussed in Sec. VI. For completeness,
angular distributions, including distributions for other de-
cay channels, are given in the appendix.

II. INTERACTIONS OF AN EXOTIC PARTICLE
WITH STANDARD MODEL FIELDS

In this section, the interaction of a color- and charge-
neutral exotic particle X with two spin-one bosons V (such
as gluons, photons, Z, or W bosons) or a fermion-
antifermion pair (such as leptons or quarks) is summarized.
The spin of X can be zero, one, or two. We construct the
most general amplitudes consistent with Lorentz invari-
ance and Bose symmetry, as well as gauge invariance with

FIG. 1. Illustration of an exotic X particle production and
decay in pp collision gg or q !q ! X ! ZZ ! 4l#. Six angles
fully characterize orientation of the decay chain: $$ and "$ of
the first Z boson in the X rest frame, two azimuthal angles" and
"1 between the three planes defined in the X rest frame, and two
Z-boson helicity angles $1 and $2 defined in the corresponding Z
rest frames. The offset of angle "$ is arbitrarily defined and
therefore this angle is not shown.

GAO et al. PHYSICAL REVIEW D 81, 075022 (2010)

075022-2
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FIG. 12 (color online). Distributions of the observables in the X ! ZZ analysis, from left to right: spin-zero, spin-one, and spin-two
signal, and q !q ! ZZ background. The signal hypotheses shown are Jþm (red circles), Jþh (green squares), J"h (blue diamonds), as
defined in Table I. Background is shown with the requirements m2 > 10 GeV and 110<m4‘ < 140 GeV. The observables shown
from top to bottom: cos!#, "1, cos!1, cos!2, and ". Points show simulated events and lines show projections of analytical
distributions.
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Motivated by this, we consider the production of a
resonance X at the LHC in gluon-gluon and quark-
antiquark partonic collisions, with the subsequent decay
of X into two Z bosons which, in turn, decay leptonically.
In Fig. 1, we show the decay chain X ! ZZ !
eþe"!þ!". However, our analysis is equally applicable
to any combination of decays Z ! eþe" or!þ!". It may
also be applicable to Z decays into " leptons since "’s from
Z decays will often be highly boosted and their decay
products collimated. We study how the spin and parity of
X, as well as information on its production and decay
mechanisms, can be extracted from angular distributions
of four leptons in the final state.

There are a few things that need to be noted. First, we
obviously assume that the resonance production and its
decays into four leptons are observed. Note that, because of
a relatively small branching fraction for leptonic Z decays,
this assumption implies a fairly large production cross
section for pp ! X and a fairly large branching fraction
for the decay X ! ZZ. As we already mentioned, there are
well-motivated scenarios of BSM physics where those
requirements are satisfied.

Second, having no bias towards any particular model of
BSM physics, we consider the most general couplings of
the particle X to relevant SM fields. This approach has to be
contrasted with typical studies of e.g. spin-two particles at
hadron colliders where such an exotic particle is often
identified with a massive graviton that couples to SM fields
through the energy-momentum tensor. We will refer to this
case as the ‘‘minimal coupling’’ of the spin-two particle to
SM fields.

The minimal coupling scenarios are well motivated
within particular models of new physics, but they are not

sufficiently general. For example, such a minimal coupling
may restrict partial waves that contribute to the production
and decay of a spin-two particle. Removing such restric-
tion opens an interesting possibility to understand the
couplings of a particle X to SM fields by means of partial
wave analyses, and we would like to set a stage for doing
that in this paper. To pursue this idea in detail, the most
general parameterization of the X coupling to SM fields is
required. Such parameterizations are known for spin-zero,
spin-one, and spin-two particles interacting with the SM
gauge bosons [7,8], and we use these parameterizations in
this paper. We also note that the model recently discussed
in Refs. [21–23] requires couplings beyond the minimal
case in order to produce longitudinal polarization
dominance.
Third, we note that while we concentrate on the decay
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2 , the technique discussed in this pa-

per is more general and can, in principle, be applied to final
states with jets and/or missing energy by studying such
processes as X ! ZZ ! lþl"jj, X ! WþW" ! lþ#jj,
etc. In contrast with pure leptonic final states, higher
statistics, larger backgrounds, and a worse angular resolu-
tion must be expected once final states with jets and miss-
ing energy are included. We plan to perform detailed
studies of these, more complicated final states, in the
future. However, we note that many results in this paper
are applicable to these final states as well.
The remainder of the paper is organized as follows: In

Sec. II, we describe the parameterization of production and
decay amplitudes that is employed in our analyses. In
Sec. III, we calculate helicity amplitudes for the decay of
a resonance into a pair of gauge bosons or into a fermion-
antifermion pair; helicity amplitudes for resonance pro-
duction are obtained by crossing. In Sec. IV, angular dis-
tributions for pp ! X ! ZZ ! f1 !f1f2 !f2 for resonances
with spins zero, one, and two are presented. This is fol-
lowed by detailed Monte Carlo simulation, which includes
all spin correlations and main experimental effects and
which is shown in Sec. V. Analysis using the multivariate
maximum likelihood technique is applied to several key
scenarios to illustrate separation power of different helicity
amplitudes for all spin hypotheses and in both production
and decay, as discussed in Sec. VI. For completeness,
angular distributions, including distributions for other de-
cay channels, are given in the appendix.

II. INTERACTIONS OF AN EXOTIC PARTICLE
WITH STANDARD MODEL FIELDS

In this section, the interaction of a color- and charge-
neutral exotic particle X with two spin-one bosons V (such
as gluons, photons, Z, or W bosons) or a fermion-
antifermion pair (such as leptons or quarks) is summarized.
The spin of X can be zero, one, or two. We construct the
most general amplitudes consistent with Lorentz invari-
ance and Bose symmetry, as well as gauge invariance with

FIG. 1. Illustration of an exotic X particle production and
decay in pp collision gg or q !q ! X ! ZZ ! 4l#. Six angles
fully characterize orientation of the decay chain: $$ and "$ of
the first Z boson in the X rest frame, two azimuthal angles" and
"1 between the three planes defined in the X rest frame, and two
Z-boson helicity angles $1 and $2 defined in the corresponding Z
rest frames. The offset of angle "$ is arbitrarily defined and
therefore this angle is not shown.
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TMD FACTORIZATION

2

the distribution of gluons inside a proton as a function of
not only its momentum along the direction of the proton,
but also transverse to it. More specifically, the differen-
tial cross section for the inclusive production of a photon
pair from gluon-gluon fusion is written as [19, 20],

dσ

d4qdΩ
∝

�
d2pTd

2kT δ
2(pT +kT −qT )Mµρκλ

�
M

κλ
νσ

�∗

Φµν
g (x1,pT , ζ1, µ)Φ

ρσ
g (x2,kT , ζ2, µ), (1)

with the longitudinal momentum fractions x1 =
q · P2/P1 · P2 and x2 = q · P1/P1 · P2, q the momentum
of the photon pair, M the gg → γγ partonic hard scat-
tering matrix element and Φ the following unpolarized
proton gluon TMD correlator,

Φµν
g (x,pT , ζ, µ) ≡ 2

�
d(ξ · P ) d2ξT
(xP · n)2(2π)3

ei(xP+pT )·ξ

Trc
�
�P |Fnν(0)Un[–]

[0,ξ] F
nµ(ξ)Un[–]

[ξ,0]|P �
�

ξ·P �=0

= − 1

2x

�
gµνT fg

1 −
�
pµTpνT
M2

p

+ gµνT

p2
T

2M2
p

�
h⊥ g
1

�
+HT, (2)

with p2T = −p2
T and gµνT = gµν − PµP �ν/P ·P � −

P �µP ν/P ·P �, where P and P � are the momenta of the
colliding protons and Mp their mass. The gauge link

U
n[–]
[0,ξ] in the matrix element runs from 0 to ξ via minus

infinity along the direction n, which is a time-like dimen-
sionless four-vector with no transverse components such
that ζ2 = (2n·P )2/n2. In principle, Eqs. (1) and (2) also
contain soft factors, but with the appropriate choice of
ζ (of around 1.5 times the hadronic center of mass en-
ergy), one can neglect their contribution, at least up to
next-to-leading order [20, 21]. The renormalization scale
should be chosen around the characteristic scale of the
hard interaction. The last line of Eq. (2) contains the pa-
rameterization of the TMD correlator in terms of the un-
polarized gluon distribution fg

1 (x,p
2
T , ζ, µ), the linearly

polarized gluon distribution h⊥ g
1 (x,p2

T , ζ, µ) and Higher
Twist (HT) terms, which only give O(1/Q) suppressed
contributions to the cross section, where Q ≡

�
q2.

The general structure of the differential cross section
for the process pp → γγX is given by [22]

dσ

d4qdΩ
∝ F1(Q, θ) C [fg

1 f
g
1 ] + F2(Q, θ) C

�
w2 h

⊥g
1 h⊥g

1

�

+ F3(Q, θ) C
�
w3f

g
1 h

⊥g
1 + (x1 ↔ x2)

�
cos(2φ)

+ F �
3(Q, θ) C

�
w3f

g
1 h

⊥g
1 − (x1 ↔ x2)

�
sin(2φ)

+ F4(Q, θ) C
�
w4 h

⊥g
1 h⊥g

1

�
cos(4φ) +O

�
qT

Q

�
, (3)

where the Fi factors consist of specific combinations of
gg → X0,2 → γγ helicity amplitudes, with F3,4 involving

amplitudes with opposite gluon helicities. The convolu-
tion C is defined as

C[w f g] ≡
�

d2pT

�
d2kT δ2(pT + kT − qT )

w(pT ,kT ) f(x1,p
2
T ) g(x2,k

2
T ) (4)

and the weights appearing in the convolutions as

w2 ≡ 2(kT ·pT )
2 − k2

Tp
2
T

4M4
p

,

w3 ≡ q2
Tk

2
T − 2(qT ·kT )2

2M2
pq

2
T

,

w4 ≡ 2

�
pT ·kT

2M2
p

− (pT ·qT )(kT ·qT )

M2
pq

2
T

�2
− p2

Tk
2
T

4M4
p

. (5)

The TMD distribution functions contain both per-
turbative and non-perturbative information. The tails
(pT � Mp) of the distribution functions can be calcu-
lated using pQCD, but the low pT region will inevitably
contain non-perturbative hadronic information. To get a
description over the full pT range one needs to extract
the TMD distribution functions from experimental data
[22, 23].
To make numerical predictions we will use a functional

form for the unpolarized gluon TMD which has, in ac-
cordance with the pQCD calculation, a 1/p2

T tail at large
pT and resembles a Gaussian for small pT ,

fg
1 (x,p

2
T ,

3

2

√
s,Mh) =

A0 M
2
0

M2
0 + p2

T

exp

�
− p2

T

ap2
T + 2σ2

�
. (6)

Preferably one would fit the parameters in Eq. (6) to ac-
tual data, but since those are currently not available we
will instead fit to the Standard Model Higgs boson trans-
verse momentum distribution obtained by interfacing the
POWHEG [24–26] NLO gluon fusion calculation [27] to
Pythia 8.170 [28, 29], assuming a Higgs mass of 125 GeV
and a collider center of mass energy of 8 TeV. Pythia
does not take into account effects of gluon polarization,
so we fit the data by setting the linearly polarized gluon
distribution equal to zero. In this way the TMD predic-
tion without gluon polarization agrees with the Pythia
prediction. We think this is the most realistic choice we
can make, because Pythia is tuned to reproduce collider
data well. Our Gaussian-with-tail Ansatz is able to ad-
equately fit the Pythia data, as is shown in Figure 1.
The fit results in the following values for the parameters
σ = 38.9 GeV, a = 0.555 and M0 = 3.90 GeV. We are
not concerned about the overall normalization, as we will
be only interested in distributions and not the absolute
size of the cross section.
The linearly polarized gluon distribution will be ex-

pressed in terms of the unpolarized gluon distribution
and the degree of polarization P, i.e.,

h⊥g
1 (x,pT , ζ, µ) = P(x,p2

T , ζ)
2M2

p

p2
T

fg
1 (x,pT , ζ, µ), (7)

2

the distribution of gluons inside a proton as a function of
not only its momentum along the direction of the proton,
but also transverse to it. More specifically, the differen-
tial cross section for the inclusive production of a photon
pair from gluon-gluon fusion is written as [19, 20],

dσ

d4qdΩ
∝

�
d2pTd

2kT δ
2(pT +kT −qT )Mµρκλ

�
M

κλ
νσ

�∗

Φµν
g (x1,pT , ζ1, µ)Φ

ρσ
g (x2,kT , ζ2, µ), (1)

with the longitudinal momentum fractions x1 =
q · P2/P1 · P2 and x2 = q · P1/P1 · P2, q the momentum
of the photon pair, M the gg → γγ partonic hard scat-
tering matrix element and Φ the following unpolarized
proton gluon TMD correlator,

Φµν
g (x,pT , ζ, µ) ≡ 2

�
d(ξ · P ) d2ξT
(xP · n)2(2π)3

ei(xP+pT )·ξ

Trc
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�P |Fnν(0)Un[–]

[0,ξ] F
nµ(ξ)Un[–]

[ξ,0]|P �
�

ξ·P �=0

= − 1

2x

�
gµνT fg

1 −
�
pµTpνT
M2

p

+ gµνT

p2
T

2M2
p

�
h⊥ g
1

�
+HT, (2)

with p2T = −p2
T and gµνT = gµν − PµP �ν/P ·P � −

P �µP ν/P ·P �, where P and P � are the momenta of the
colliding protons and Mp their mass. The gauge link

U
n[–]
[0,ξ] in the matrix element runs from 0 to ξ via minus

infinity along the direction n, which is a time-like dimen-
sionless four-vector with no transverse components such
that ζ2 = (2n·P )2/n2. In principle, Eqs. (1) and (2) also
contain soft factors, but with the appropriate choice of
ζ (of around 1.5 times the hadronic center of mass en-
ergy), one can neglect their contribution, at least up to
next-to-leading order [20, 21]. The renormalization scale
should be chosen around the characteristic scale of the
hard interaction. The last line of Eq. (2) contains the pa-
rameterization of the TMD correlator in terms of the un-
polarized gluon distribution fg

1 (x,p
2
T , ζ, µ), the linearly

polarized gluon distribution h⊥ g
1 (x,p2

T , ζ, µ) and Higher
Twist (HT) terms, which only give O(1/Q) suppressed
contributions to the cross section, where Q ≡

�
q2.

The general structure of the differential cross section
for the process pp → γγX is given by [22]
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where the Fi factors consist of specific combinations of
gg → X0,2 → γγ helicity amplitudes, with F3,4 involving

amplitudes with opposite gluon helicities. The convolu-
tion C is defined as

C[w f g] ≡
�

d2pT

�
d2kT δ2(pT + kT − qT )

w(pT ,kT ) f(x1,p
2
T ) g(x2,k

2
T ) (4)

and the weights appearing in the convolutions as

w2 ≡ 2(kT ·pT )
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2
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4M4
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,
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,
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The TMD distribution functions contain both per-
turbative and non-perturbative information. The tails
(pT � Mp) of the distribution functions can be calcu-
lated using pQCD, but the low pT region will inevitably
contain non-perturbative hadronic information. To get a
description over the full pT range one needs to extract
the TMD distribution functions from experimental data
[22, 23].
To make numerical predictions we will use a functional

form for the unpolarized gluon TMD which has, in ac-
cordance with the pQCD calculation, a 1/p2

T tail at large
pT and resembles a Gaussian for small pT ,

fg
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2
T ,
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√
s,Mh) =
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exp
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ap2
T + 2σ2
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. (6)

Preferably one would fit the parameters in Eq. (6) to ac-
tual data, but since those are currently not available we
will instead fit to the Standard Model Higgs boson trans-
verse momentum distribution obtained by interfacing the
POWHEG [24–26] NLO gluon fusion calculation [27] to
Pythia 8.170 [28, 29], assuming a Higgs mass of 125 GeV
and a collider center of mass energy of 8 TeV. Pythia
does not take into account effects of gluon polarization,
so we fit the data by setting the linearly polarized gluon
distribution equal to zero. In this way the TMD predic-
tion without gluon polarization agrees with the Pythia
prediction. We think this is the most realistic choice we
can make, because Pythia is tuned to reproduce collider
data well. Our Gaussian-with-tail Ansatz is able to ad-
equately fit the Pythia data, as is shown in Figure 1.
The fit results in the following values for the parameters
σ = 38.9 GeV, a = 0.555 and M0 = 3.90 GeV. We are
not concerned about the overall normalization, as we will
be only interested in distributions and not the absolute
size of the cross section.
The linearly polarized gluon distribution will be ex-

pressed in terms of the unpolarized gluon distribution
and the degree of polarization P, i.e.,

h⊥g
1 (x,pT , ζ, µ) = P(x,p2

T , ζ)
2M2

p

p2
T
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1 (x,pT , ζ, µ), (7)
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GENERAL STRUCTURE
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PARTONIC AMPLITUDES

=
1

2
c1 q

2gµαgνβ +
�
c2 q

2gµν + c5 �
pkµν

� (p− k)α(p− k)β

q2

µ

ν

αβ

p

k

q

µ

ν

p

k

q

= a1 q
2gµν + a3 �

pkµν

4

scenario 0+ 0− 2+m 2+h 2+h� 2+h�� 2−h

a1 1 0 - - - - -

a3 0 1 - - - - -

c1 - - 1 0 1 1 0

c2 - - − 1
4 1 1 − 3

2 0

c5 - - 0 0 0 0 1

TABLE I. Different spin, parity and coupling scenarios.

be present if both c1 and c5 are non-zero, implying a

CP -violating interaction.

In Ref. [12] a set of different spin, parity and cou-

pling scenarios is defined. To those scenarios we will

add 2
+
h� and 2

+
h�� , which will serve as examples of higher-

dimensional spin-2 coupling hypotheses that are indistin-

guishable in the θ distribution, but do have a different φ
distribution. The scenarios are summarized in Table I.

In Figure 3 we show the diphoton cos θ distribution for

the various scenarios. Looking only at this distribution

0
+

and 0
−

are indistinguishable, as are 2
+
h and 2

−
h , and

also 2
+
h� and 2

+
h�� .

�1.0 �0.5 0.5 1.0
cos Θ

0.2
0.4
0.6
0.8
1.0
1.2
1.4

� �Φ �qT
2 �Σ �� �Φ �qT

2 �cosΘ �Σ

2h
�

2h'
�, 2h''

�

2m
�

0�

FIG. 3. Plot of the cos θ distribution for the various scenarios.

In Figure 4 we show the diphoton transverse momen-

tum distribution for the different coupling hypotheses at

fixed θ = π/2 and at zero rapidity. The positive parity

states show an enhancement at low qT (< 15 GeV) with

respect to the negative parity states. At high qT (> 15

GeV) this is reversed, but with such a strongly reduced

magnitude that it is invisible in the plot. The qT distri-

bution can thus, in principle, be used to determine the

parity of the newly found boson [14, 15]. Although the

difference is small and most likely difficult to measure ex-

perimentally, this is the only way we know to determine

the parity in the gg → X0,2 → γγ channel.

Figure 5 shows the diphoton φ distribution for the se-

lected scenarios at fixed θ = π/2 and at zero rapidity.

The scalar, pseudoscalar and 2
±
h hypotheses show a uni-

form φ distribution, whereas the 2
+
m has a characteristic

cos(4φ) dependence with an amplitude of 5.4+3.7
−1.8%. The

2
+
h� and 2

+
h�� scenarios exhibit a weak cos(4φ) modula-

tion with an amplitude of 1.2+0.8
−0.4% and a strong cos(2φ)

modulation with an amplitude of 24 ± 3% and opposite

sign. The φ distribution thus offers a way to distinguish

5 10 15 20 25 30
qT �GeV�0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

� �Φ �Σ �� �Φ �qT
2 �Σ

0�,2h
�

2h'
�,2h''
�

2m
�

0�,2h
�

FIG. 4. Plot of the qT distribution for the various coupling
schemes at θ = π/2 and zero rapidity, using an upper limit on
the qT integration in the denominator of Mh/2. The shaded
area is due to the uncertainty in the degree of polarization.

0
±
, 2

+
m, 2

+
h� and 2

+
h�� from each other, something that is

impossible with the cos θ distribution alone.

We want to stress again that a sin 2φ dependence im-

plies a CP -violation coupling, which is thus very inter-

esting to search for. Note however that Higgs bosons

produced with positive and negative rapidity have to be

treated separately, because those regions will have an op-

posite sign sin 2φ modulation and would otherwise can-

cel. We also want to mention that gg → γγ continuum

production has a non-isotropic φ dependence, with an

amplitude approximately a factor 3 smaller than reso-

nance production [22, 34], which should not be mistaken

for a spin-2 Higgs.

�3 �2 �1 0 1 2 3
Φ

0.05

0.10

0.15

0.20

� �qT
2 �Σ �� �Φ �qT

2 �Σ

2m
�

0�,2h
�

2h'
�

2h''
�

FIG. 5. Plot of the φ distribution for the different benchmark
scenarios at θ = π/2 and zero rapidity, using an upper limit
on the qT integration of Mh/2. The shaded area is due to the
uncertainty in the degree of polarization.

In conclusion, we have calculated the diphoton distri-

bution in the decay of arbitrary spin-0 and spin-2 bosons

produced from gluon fusion, taking into account the fact

that gluons inside an unpolarized proton are generally

linearly polarized. The gluon polarization brings about

a difference in the transverse momentum distribution of

positive and negative parity states. At the same time, it

causes the azimuthal CS angle φ distribution to be non-

isotropic for various spin-2 coupling hypotheses. These

distributions allow spin and parity scenarios to be dis-
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UNPOLARIZED DISTRIBUTION

2

the distribution of gluons inside a proton as a function of
not only its momentum along the direction of the proton,
but also transverse to it. More specifically, the differen-
tial cross section for the inclusive production of a photon
pair from gluon-gluon fusion is written as [19, 20],

dσ

d4qdΩ
∝

�
d2pTd

2kT δ
2(pT +kT −qT )Mµρκλ

�
M

κλ
νσ

�∗

Φµν
g (x1,pT , ζ1, µ)Φ

ρσ
g (x2,kT , ζ2, µ), (1)

with the longitudinal momentum fractions x1 =
q · P2/P1 · P2 and x2 = q · P1/P1 · P2, q the momentum
of the photon pair, M the gg → γγ partonic hard scat-
tering matrix element and Φ the following unpolarized
proton gluon TMD correlator,

Φµν
g (x,pT , ζ, µ) ≡ 2

�
d(ξ · P ) d2ξT
(xP · n)2(2π)3

ei(xP+pT )·ξ

Trc
�
�P |Fnν(0)Un[–]

[0,ξ] F
nµ(ξ)Un[–]

[ξ,0]|P �
�

ξ·P �=0

= − 1

2x

�
gµνT fg

1 −
�
pµTpνT
M2

p

+ gµνT

p2
T

2M2
p

�
h⊥ g
1

�
+HT, (2)

with p2T = −p2
T and gµνT = gµν − PµP �ν/P ·P � −

P �µP ν/P ·P �, where P and P � are the momenta of the
colliding protons and Mp their mass. The gauge link

U
n[–]
[0,ξ] in the matrix element runs from 0 to ξ via minus

infinity along the direction n, which is a time-like dimen-
sionless four-vector with no transverse components such
that ζ2 = (2n·P )2/n2. In principle, Eqs. (1) and (2) also
contain soft factors, but with the appropriate choice of
ζ (of around 1.5 times the hadronic center of mass en-
ergy), one can neglect their contribution, at least up to
next-to-leading order [20, 21]. The renormalization scale
should be chosen around the characteristic scale of the
hard interaction. The last line of Eq. (2) contains the pa-
rameterization of the TMD correlator in terms of the un-
polarized gluon distribution fg

1 (x,p
2
T , ζ, µ), the linearly

polarized gluon distribution h⊥ g
1 (x,p2

T , ζ, µ) and Higher
Twist (HT) terms, which only give O(1/Q) suppressed
contributions to the cross section, where Q ≡

�
q2.

The general structure of the differential cross section
for the process pp → γγX is given by [22]
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∝ F1(Q, θ) C [fg

1 f
g
1 ] + F2(Q, θ) C

�
w2 h

⊥g
1 h⊥g

1

�

+ F3(Q, θ) C
�
w3f

g
1 h

⊥g
1 + (x1 ↔ x2)

�
cos(2φ)

+ F �
3(Q, θ) C

�
w3f

g
1 h

⊥g
1 − (x1 ↔ x2)

�
sin(2φ)

+ F4(Q, θ) C
�
w4 h

⊥g
1 h⊥g

1

�
cos(4φ) +O
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, (3)

where the Fi factors consist of specific combinations of
gg → X0,2 → γγ helicity amplitudes, with F3,4 involving

amplitudes with opposite gluon helicities. The convolu-
tion C is defined as

C[w f g] ≡
�

d2pT

�
d2kT δ2(pT + kT − qT )

w(pT ,kT ) f(x1,p
2
T ) g(x2,k

2
T ) (4)

and the weights appearing in the convolutions as

w2 ≡ 2(kT ·pT )
2 − k2

Tp
2
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4M4
p

,

w3 ≡ q2
Tk

2
T − 2(qT ·kT )2

2M2
pq

2
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,

w4 ≡ 2
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2M2
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− (pT ·qT )(kT ·qT )

M2
pq

2
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�2
− p2

Tk
2
T

4M4
p

. (5)

The TMD distribution functions contain both per-
turbative and non-perturbative information. The tails
(pT � Mp) of the distribution functions can be calcu-
lated using pQCD, but the low pT region will inevitably
contain non-perturbative hadronic information. To get a
description over the full pT range one needs to extract
the TMD distribution functions from experimental data
[22, 23].
To make numerical predictions we will use a functional

form for the unpolarized gluon TMD which has, in ac-
cordance with the pQCD calculation, a 1/p2

T tail at large
pT and resembles a Gaussian for small pT ,

fg
1 (x,p

2
T ,

3

2

√
s,Mh) =

A0 M
2
0

M2
0 + p2

T

exp

�
− p2

T

ap2
T + 2σ2

�
. (6)

Preferably one would fit the parameters in Eq. (6) to ac-
tual data, but since those are currently not available we
will instead fit to the Standard Model Higgs boson trans-
verse momentum distribution obtained by interfacing the
POWHEG [24–26] NLO gluon fusion calculation [27] to
Pythia 8.170 [28, 29], assuming a Higgs mass of 125 GeV
and a collider center of mass energy of 8 TeV. Pythia
does not take into account effects of gluon polarization,
so we fit the data by setting the linearly polarized gluon
distribution equal to zero. In this way the TMD predic-
tion without gluon polarization agrees with the Pythia
prediction. We think this is the most realistic choice we
can make, because Pythia is tuned to reproduce collider
data well. Our Gaussian-with-tail Ansatz is able to ad-
equately fit the Pythia data, as is shown in Figure 1.
The fit results in the following values for the parameters
σ = 38.9 GeV, a = 0.555 and M0 = 3.90 GeV. We are
not concerned about the overall normalization, as we will
be only interested in distributions and not the absolute
size of the cross section.
The linearly polarized gluon distribution will be ex-

pressed in terms of the unpolarized gluon distribution
and the degree of polarization P, i.e.,

h⊥g
1 (x,pT , ζ, µ) = P(x,p2

T , ζ)
2M2

p

p2
T

fg
1 (x,pT , ζ, µ), (7)
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FIG. 1. Plot of qTC[fg
1 f

g
1 ] (line) and the Pythia Higgs dσ/dqT

distribution for Mh = 125 GeV at
√
s = 8 TeV (points).

such that |P| = 1 corresponds to h⊥g
1 saturating its up-

per bound [30] and with the correct power law tail as first
calculated in [19]. Calculations of the gluon TMD distri-
butions using the Color Glass Condensate model predict
maximal gluon polarization for large pT and small x [31].
Ideally one extracts the degree of polarization from data,
but this is currently unfeasible.

Perturbative QCD can be used to calculate the large
pT tails of the TMD distributions in terms of the collinear
parton distribution functions as has been done in Ref.
[21] for the unpolarized distribution and Ref. [19] for
the linearly polarized gluon distribution. We will follow
a similar approach, but keep finite ζ instead of taking
the ζ → ∞ limit and calculate the degree of polarization
to leading order in αs from the MSTW 2008 collinear
parton distributions [32] evaluated at a scale of µ = 2
GeV.

The pQCD calculation is only valid in the limit pT �
Mp. To model the lack of knowledge at low pT , we will
define three different degrees of polarization Pmin, P and
Pmax, of which the first approaches zero at low pT , the
second follows the pQCD prediction and the last reaches
up to one at low pT . Other sources of uncertainty are the
choices of the scales ζ and µ and the omission of higher
order terms. We estimate this additional uncertainty, by
varying the different scales, to be maximally 10% and
model it by letting Pmax,min approach the pQCD calcu-
lation ±10% for large pT . More specifically, we define

Pmin ≡ p4
T

p40 + p4
T

0.9PpQCD(x,p
2
T ),

P ≡ PpQCD(x,p
2
T ),

Pmax ≡ 1− p4
T

p40 + p4
T

�
1− 1.1PpQCD(x,p

2
T )
�
, (8)

where PpQCD is the pQCD degree of polarization cal-
culated at ζ = 1.5

√
s and we take p0 = 5 GeV. The

resulting Pmin, P and Pmax are plotted in Figure 2.
We will consider the partonic process gg → X0,2 → γγ

where X is either a spin-0 or spin-2 boson, with com-
pletely general couplings. For the interaction vertex we
will follow the conventions of Refs. [11] and [12], where

20 40 60 80 100
pT �GeV�0.2

0.4

0.6

0.8

1.0

Pmax

P
Pmin

FIG. 2. Plot of the degrees of polarization Pmin, P and Pmax

at x = Mh/
√
s, with Mh = 125 GeV and

√
s = 8 TeV.

the vertex coupling a spin-0 boson to massless gauge
bosons is parameterized as

V [X0 → V µ(q1)V
ν(q2)] = a1q

2gµν + a3�
q1q2µν , (9)

and for a spin-2 boson as

V [Xαβ
2 → V µ(q1)V

ν(q2)] =
1

2
c1q

2gµαgνβ

+
�
c2q

2gµν + c5�
q1q2µν

� q̃αq̃β

q2
, (10)

where q ≡ q1+q2 and q̃ ≡ q1−q2. The coupling to gluons
can be different from the coupling to photons, but to keep
expressions compact we will consider them equal.
For the gg → X0 → γγ subprocess, the non-zero F

factors in Eq. (3) read

F1 = 16|a1|4 + 8|a1|2|a3|2 + |a3|2,
F2 = 16|a1|4 − |a3|4, (11)

and for the gg → X2 → γγ process one has

F1 = 18A+|c1|2s4θ +A+2�
1− 3c2θ

�2

+
9

8
|c1|4(28c2θ + c4θ + 35),

F2 = 9A−|c1|2s4θ +A−A+
�
1− 3c2θ

�2
,

F3 = 3s2θB
− �

3|c1|2(c2θ + 3) +A+(3c2θ + 1)
�
,

F �
3 = 6s2θRe(c1c

∗
5)

�
3|c1|2(c2θ + 3) +A+(3c2θ + 1)

�
,

F4 = 9s4θ|c1|2
�
2B+ + 4|c5|2

�
, (12)

where we have defined A± ≡ |c1 + 4c2|2 ± 4|c5|2, B± ≡
|c1+2c2|2±4|c2|2, cnθ ≡ cos(nθ) and sθ ≡ sin(θ). Overall
factors have been dropped, because as said we will be
only interested in distributions and not the absolute size
of the cross section. Unlike the case for Higgs production
from linearly polarized photons [33], there is no direct
observable signalling CP violation in the spin-0 case. For
the spin-2 case there is such a clear signature, being a
sin 2φ dependence of the cross section, which can only

the choice of the scale ζ and the scale of the collinear pdfs from which the pQCD degree of polarization
is calculated and the fact that we use a finite order calculation. We model this as an additional 10%
inaccuracy, i.e.,

Pmin(p
2
T ) ≡

p4
T

p40 + p4
T

0.9PpQCD(p
2
T ),

P(p2
T ) ≡ PpQCD(p

2
T ),

Pmax(p
2
T ) ≡ 1− p4

T

p40 + p4
T

�
1− 1.1PpQCD(p

2
T )
�
, (4)

where PpQCD is the degree of polarization predicted by pQCD and we take p0 = 5 GeV. The resulting
Pmin, P and Pmax are plotted in Figure 2.
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Figure 2: Plot of fg
1 (x,pT ) in Eq. (1) using the fitted parameters given in Eq. (3) (left) and

plot of the three different assumptions on the degree of polarization P(p2
T ) (right).

1 R functions

The R functions are defined as

R2(qT ) ≡
C
�
w2 h

⊥g
1 h⊥g

1

�

C [fg
1 f

g
1 ]

,

R±
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C
�
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1 fg

1 ± w3(kT )f
g
1 h

⊥g
1

�

C [fg
1 f

g
1 ]

,

R4(qT ) ≡
C
�
w4h

⊥g
1 h⊥g
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�

C [fg
1 f

g
1 ]

, (5)

and the integrated Rint functions as

R±int
3 (qmax

T ) ≡

� qmax
T

0 dq2T C
�
w3(pT )h

⊥g
1 fg

1 ± w3(kT )f
g
1 h

⊥g
1

�

� qmax
T

0 dq2T C [fg
1 f

g
1 ]

,

Rint
4 (qmax

T ) ≡

� qmax
T

0 dq2T C
�
w4h

⊥g
1 h⊥g

1

�

� qmax
T

0 dq2T C [fg
1 f

g
1 ]

, (6)

2

C[w f g] ≡
�

d2pT

�
d2kT δ2(pT + kT − qT )

w(pT ,kT ) f(x1,p
2
T ) g(x2,k

2
T )
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The gluon TMD correlator is defined as

Φµν(x,kT ) =

�
d(ξ · P )d2ξT

(k · n)2(2π)3 eik·ξ2Trc
�
P
��Fnν(0)U [−]

[0,ξ]F
nµ(ξ)U [−]

[ξ,0]

��P
�
. (1)

The tail can be expressed in terms of the Feynman diagrams on the top of the page by

Φµν
tail(x,kT ) =

2
�
d(k · P )

(k · n)2 (diag 1 + diag 2 + diag 3) . (2)

a, µ

bc

q
i

q·n+iε

−gsnµf abc

k

ν

a, µ

b

p

−δabi[k · ngµν − pνnµ]

q
(2π)4δ4(q)

p

ν

k

a, µ

b δabi[k · ngµν − pνnµ]

Figure 1: Wilson line Feynman rules.

1

The contribution to the distribution functions from this diagram is given by

fg
1diag 3(x,kT ) = −2xg2sCA

(2π)3

�
dy A3f

g
1 (y),

h⊥g
1diag 3(x,kT ) = 0. (24)

The ζ → ∞ limit

We again have to be careful taking the large ζ limit, because naively one might think that A3 would
vanish completeley, but that’s not the case. To see this, we first write

fg
1diag 3(x,kT ) = − 4g2sCA

(2π)3k2T
x

�
dy − (y − x)α

y[α+ (x− y)2]2
fg
1 (y), (25)

where α ≡ −k2T/ζ
2 is small but nonzero. To see what this weight in the integrand does to fg

1 (y), we
write it in a power expansion around the point x, i.e.,

fg
1 (y) =

�

n

cn(y − x)n. (26)

Plugging this into the integral, we obtain

fg
1diag 3(x,kT ) = − 4g2sCA

(2π)3k2T

−1

2
c0, (27)

in the α → 0 limit. We can thus equally write

fg
1diag 3(x,kT ) = − 4g2sCA

(2π)3k2T

�
dy

−1

2
δ(y − x)fg

1 (y) (28)

or

fg
1diag 3(x,kT ) = − 4g2sCA

(2π)3k2T

�
dz

−1

2
δ(z − 1)fg

1 (x/z). (29)

Quark contribution
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The contribution from the quark correlator to the tail of the gluon correlator is given by

Φµν
quark(x,kT ) =

2g2s
(k · n)2

�
d4(k� − k)

(2π)3

�
d(k · P )δ

�
(k� − k)2

� 1

k4

�
k · ngµκ − kµnκ

��
k · ngνη − kνnη

�

�

q

�
Tr

�
γκT aΦq(k�)γηT a(/k

� − /k)
�
Tr

�
γκT a(/k

� − /k)γηT aΦq̄(k�)
��

(30)

We follow the same steps as before and express the quark contribution in terms of the collinear quark
correlator,

Φq(x) =
1

2
/Pfq

1 (x). (31)
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1

2

the distribution of gluons inside a proton as a function of
not only its momentum along the direction of the proton,
but also transverse to it. More specifically, the differen-
tial cross section for the inclusive production of a photon
pair from gluon-gluon fusion is written as [19, 20],

dσ

d4qdΩ
∝

�
d2pTd

2kT δ
2(pT +kT −qT )Mµρκλ

�
M

κλ
νσ

�∗

Φµν
g (x1,pT , ζ1, µ)Φ

ρσ
g (x2,kT , ζ2, µ), (1)

with the longitudinal momentum fractions x1 =
q · P2/P1 · P2 and x2 = q · P1/P1 · P2, q the momentum
of the photon pair, M the gg → γγ partonic hard scat-
tering matrix element and Φ the following unpolarized
proton gluon TMD correlator,

Φµν
g (x,pT , ζ, µ) ≡ 2

�
d(ξ · P ) d2ξT
(xP · n)2(2π)3

ei(xP+pT )·ξ

Trc
�
�P |Fnν(0)Un[–]

[0,ξ] F
nµ(ξ)Un[–]

[ξ,0]|P �
�

ξ·P �=0

= − 1

2x

�
gµνT fg

1 −
�
pµTpνT
M2

p

+ gµνT

p2
T

2M2
p

�
h⊥ g
1

�
+HT, (2)

with p2T = −p2
T and gµνT = gµν − PµP �ν/P ·P � −

P �µP ν/P ·P �, where P and P � are the momenta of the
colliding protons and Mp their mass. The gauge link

U
n[–]
[0,ξ] in the matrix element runs from 0 to ξ via minus

infinity along the direction n, which is a time-like dimen-
sionless four-vector with no transverse components such
that ζ2 = (2n·P )2/n2. In principle, Eqs. (1) and (2) also
contain soft factors, but with the appropriate choice of
ζ (of around 1.5 times the hadronic center of mass en-
ergy), one can neglect their contribution, at least up to
next-to-leading order [20, 21]. The renormalization scale
should be chosen around the characteristic scale of the
hard interaction. The last line of Eq. (2) contains the pa-
rameterization of the TMD correlator in terms of the un-
polarized gluon distribution fg

1 (x,p
2
T , ζ, µ), the linearly

polarized gluon distribution h⊥ g
1 (x,p2

T , ζ, µ) and Higher
Twist (HT) terms, which only give O(1/Q) suppressed
contributions to the cross section, where Q ≡

�
q2.

The general structure of the differential cross section
for the process pp → γγX is given by [22]

dσ

d4qdΩ
∝ F1(Q, θ) C [fg

1 f
g
1 ] + F2(Q, θ) C

�
w2 h

⊥g
1 h⊥g

1

�

+ F3(Q, θ) C
�
w3f

g
1 h

⊥g
1 + (x1 ↔ x2)

�
cos(2φ)

+ F �
3(Q, θ) C

�
w3f

g
1 h

⊥g
1 − (x1 ↔ x2)

�
sin(2φ)

+ F4(Q, θ) C
�
w4 h

⊥g
1 h⊥g

1

�
cos(4φ) +O

�
qT

Q

�
, (3)

where the Fi factors consist of specific combinations of
gg → X0,2 → γγ helicity amplitudes, with F3,4 involving

amplitudes with opposite gluon helicities. The convolu-
tion C is defined as

C[w f g] ≡
�

d2pT

�
d2kT δ2(pT + kT − qT )

w(pT ,kT ) f(x1,p
2
T ) g(x2,k

2
T ) (4)

and the weights appearing in the convolutions as

w2 ≡ 2(kT ·pT )
2 − k2

Tp
2
T

4M4
p

,

w3 ≡ q2
Tk

2
T − 2(qT ·kT )2

2M2
pq

2
T

,

w4 ≡ 2

�
pT ·kT

2M2
p

− (pT ·qT )(kT ·qT )

M2
pq

2
T

�2
− p2

Tk
2
T

4M4
p

. (5)

The TMD distribution functions contain both per-
turbative and non-perturbative information. The tails
(pT � Mp) of the distribution functions can be calcu-
lated using pQCD, but the low pT region will inevitably
contain non-perturbative hadronic information. To get a
description over the full pT range one needs to extract
the TMD distribution functions from experimental data
[22, 23].
To make numerical predictions we will use a functional

form for the unpolarized gluon TMD which has, in ac-
cordance with the pQCD calculation, a 1/p2

T tail at large
pT and resembles a Gaussian for small pT ,

fg
1 (x,p

2
T ,

3

2

√
s,Mh) =

A0 M
2
0

M2
0 + p2

T

exp

�
− p2

T

ap2
T + 2σ2

�
. (6)

Preferably one would fit the parameters in Eq. (6) to ac-
tual data, but since those are currently not available we
will instead fit to the Standard Model Higgs boson trans-
verse momentum distribution obtained by interfacing the
POWHEG [24–26] NLO gluon fusion calculation [27] to
Pythia 8.170 [28, 29], assuming a Higgs mass of 125 GeV
and a collider center of mass energy of 8 TeV. Pythia
does not take into account effects of gluon polarization,
so we fit the data by setting the linearly polarized gluon
distribution equal to zero. In this way the TMD predic-
tion without gluon polarization agrees with the Pythia
prediction. We think this is the most realistic choice we
can make, because Pythia is tuned to reproduce collider
data well. Our Gaussian-with-tail Ansatz is able to ad-
equately fit the Pythia data, as is shown in Figure 1.
The fit results in the following values for the parameters
σ = 38.9 GeV, a = 0.555 and M0 = 3.90 GeV. We are
not concerned about the overall normalization, as we will
be only interested in distributions and not the absolute
size of the cross section.
The linearly polarized gluon distribution will be ex-

pressed in terms of the unpolarized gluon distribution
and the degree of polarization P, i.e.,

h⊥g
1 (x,pT , ζ, µ) = P(x,p2

T , ζ)
2M2

p

p2
T

fg
1 (x,pT , ζ, µ), (7)
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the distribution of gluons inside a proton as a function of
not only its momentum along the direction of the proton,
but also transverse to it. More specifically, the differen-
tial cross section for the inclusive production of a photon
pair from gluon-gluon fusion is written as [19, 20],

dσ

d4qdΩ
∝
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d2pTd

2kT δ
2(pT +kT −qT )Mµρκλ

�
M

κλ
νσ

�∗

Φµν
g (x1,pT , ζ1, µ)Φ

ρσ
g (x2,kT , ζ2, µ), (1)

with the longitudinal momentum fractions x1 =
q · P2/P1 · P2 and x2 = q · P1/P1 · P2, q the momentum
of the photon pair, M the gg → γγ partonic hard scat-
tering matrix element and Φ the following unpolarized
proton gluon TMD correlator,

Φµν
g (x,pT , ζ, µ) ≡ 2
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d(ξ · P ) d2ξT
(xP · n)2(2π)3

ei(xP+pT )·ξ
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with p2T = −p2
T and gµνT = gµν − PµP �ν/P ·P � −

P �µP ν/P ·P �, where P and P � are the momenta of the
colliding protons and Mp their mass. The gauge link

U
n[–]
[0,ξ] in the matrix element runs from 0 to ξ via minus

infinity along the direction n, which is a time-like dimen-
sionless four-vector with no transverse components such
that ζ2 = (2n·P )2/n2. In principle, Eqs. (1) and (2) also
contain soft factors, but with the appropriate choice of
ζ (of around 1.5 times the hadronic center of mass en-
ergy), one can neglect their contribution, at least up to
next-to-leading order [20, 21]. The renormalization scale
should be chosen around the characteristic scale of the
hard interaction. The last line of Eq. (2) contains the pa-
rameterization of the TMD correlator in terms of the un-
polarized gluon distribution fg

1 (x,p
2
T , ζ, µ), the linearly

polarized gluon distribution h⊥ g
1 (x,p2

T , ζ, µ) and Higher
Twist (HT) terms, which only give O(1/Q) suppressed
contributions to the cross section, where Q ≡

�
q2.

The general structure of the differential cross section
for the process pp → γγX is given by [22]
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, (3)

where the Fi factors consist of specific combinations of
gg → X0,2 → γγ helicity amplitudes, with F3,4 involving

amplitudes with opposite gluon helicities. The convolu-
tion C is defined as

C[w f g] ≡
�

d2pT

�
d2kT δ2(pT + kT − qT )

w(pT ,kT ) f(x1,p
2
T ) g(x2,k

2
T ) (4)

and the weights appearing in the convolutions as

w2 ≡ 2(kT ·pT )
2 − k2
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2
T

4M4
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,

w3 ≡ q2
Tk

2
T − 2(qT ·kT )2
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,

w4 ≡ 2

�
pT ·kT

2M2
p

− (pT ·qT )(kT ·qT )

M2
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2
T

�2
− p2

Tk
2
T

4M4
p

. (5)

The TMD distribution functions contain both per-
turbative and non-perturbative information. The tails
(pT � Mp) of the distribution functions can be calcu-
lated using pQCD, but the low pT region will inevitably
contain non-perturbative hadronic information. To get a
description over the full pT range one needs to extract
the TMD distribution functions from experimental data
[22, 23].
To make numerical predictions we will use a functional

form for the unpolarized gluon TMD which has, in ac-
cordance with the pQCD calculation, a 1/p2

T tail at large
pT and resembles a Gaussian for small pT ,
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1 (x,p
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√
s,Mh) =

A0 M
2
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T

exp

�
− p2

T

ap2
T + 2σ2

�
. (6)

Preferably one would fit the parameters in Eq. (6) to ac-
tual data, but since those are currently not available we
will instead fit to the Standard Model Higgs boson trans-
verse momentum distribution obtained by interfacing the
POWHEG [24–26] NLO gluon fusion calculation [27] to
Pythia 8.170 [28, 29], assuming a Higgs mass of 125 GeV
and a collider center of mass energy of 8 TeV. Pythia
does not take into account effects of gluon polarization,
so we fit the data by setting the linearly polarized gluon
distribution equal to zero. In this way the TMD predic-
tion without gluon polarization agrees with the Pythia
prediction. We think this is the most realistic choice we
can make, because Pythia is tuned to reproduce collider
data well. Our Gaussian-with-tail Ansatz is able to ad-
equately fit the Pythia data, as is shown in Figure 1.
The fit results in the following values for the parameters
σ = 38.9 GeV, a = 0.555 and M0 = 3.90 GeV. We are
not concerned about the overall normalization, as we will
be only interested in distributions and not the absolute
size of the cross section.
The linearly polarized gluon distribution will be ex-

pressed in terms of the unpolarized gluon distribution
and the degree of polarization P, i.e.,

h⊥g
1 (x,pT , ζ, µ) = P(x,p2

T , ζ)
2M2

p

p2
T

fg
1 (x,pT , ζ, µ), (7)
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FIG. 1. Plot of qTC[fg
1 f

g
1 ] (line) and the Pythia Higgs dσ/dqT

distribution for Mh = 125 GeV at
√
s = 8 TeV (points).

such that |P| = 1 corresponds to h⊥g
1 saturating its up-

per bound [30] and with the correct power law tail as first
calculated in [19]. Calculations of the gluon TMD distri-
butions using the Color Glass Condensate model predict
maximal gluon polarization for large pT and small x [31].
Ideally one extracts the degree of polarization from data,
but this is currently unfeasible.

Perturbative QCD can be used to calculate the large
pT tails of the TMD distributions in terms of the collinear
parton distribution functions as has been done in Ref.
[21] for the unpolarized distribution and Ref. [19] for
the linearly polarized gluon distribution. We will follow
a similar approach, but keep finite ζ instead of taking
the ζ → ∞ limit and calculate the degree of polarization
to leading order in αs from the MSTW 2008 collinear
parton distributions [32] evaluated at a scale of µ = 2
GeV.

The pQCD calculation is only valid in the limit pT �
Mp. To model the lack of knowledge at low pT , we will
define three different degrees of polarization Pmin, P and
Pmax, of which the first approaches zero at low pT , the
second follows the pQCD prediction and the last reaches
up to one at low pT . Other sources of uncertainty are the
choices of the scales ζ and µ and the omission of higher
order terms. We estimate this additional uncertainty, by
varying the different scales, to be maximally 10% and
model it by letting Pmax,min approach the pQCD calcu-
lation ±10% for large pT . More specifically, we define

Pmin ≡ p4
T

p40 + p4
T

0.9PpQCD(x,p
2
T ),

P ≡ PpQCD(x,p
2
T ),

Pmax ≡ 1− p4
T

p40 + p4
T

�
1− 1.1PpQCD(x,p

2
T )
�
, (8)

where PpQCD is the pQCD degree of polarization cal-
culated at ζ = 1.5

√
s and we take p0 = 5 GeV. The

resulting Pmin, P and Pmax are plotted in Figure 2.
We will consider the partonic process gg → X0,2 → γγ

where X is either a spin-0 or spin-2 boson, with com-
pletely general couplings. For the interaction vertex we
will follow the conventions of Refs. [11] and [12], where

20 40 60 80 100
pT �GeV�0.2
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1.0

Pmax

P
Pmin

FIG. 2. Plot of the degrees of polarization Pmin, P and Pmax

at x = Mh/
√
s, with Mh = 125 GeV and

√
s = 8 TeV.

the vertex coupling a spin-0 boson to massless gauge
bosons is parameterized as

V [X0 → V µ(q1)V
ν(q2)] = a1q

2gµν + a3�
q1q2µν , (9)

and for a spin-2 boson as

V [Xαβ
2 → V µ(q1)V

ν(q2)] =
1

2
c1q

2gµαgνβ

+
�
c2q

2gµν + c5�
q1q2µν

� q̃αq̃β

q2
, (10)

where q ≡ q1+q2 and q̃ ≡ q1−q2. The coupling to gluons
can be different from the coupling to photons, but to keep
expressions compact we will consider them equal.
For the gg → X0 → γγ subprocess, the non-zero F

factors in Eq. (3) read

F1 = 16|a1|4 + 8|a1|2|a3|2 + |a3|2,
F2 = 16|a1|4 − |a3|4, (11)

and for the gg → X2 → γγ process one has

F1 = 18A+|c1|2s4θ +A+2�
1− 3c2θ

�2

+
9

8
|c1|4(28c2θ + c4θ + 35),

F2 = 9A−|c1|2s4θ +A−A+
�
1− 3c2θ

�2
,

F3 = 3s2θB
− �

3|c1|2(c2θ + 3) +A+(3c2θ + 1)
�
,

F �
3 = 6s2θRe(c1c

∗
5)

�
3|c1|2(c2θ + 3) +A+(3c2θ + 1)

�
,

F4 = 9s4θ|c1|2
�
2B+ + 4|c5|2

�
, (12)

where we have defined A± ≡ |c1 + 4c2|2 ± 4|c5|2, B± ≡
|c1+2c2|2±4|c2|2, cnθ ≡ cos(nθ) and sθ ≡ sin(θ). Overall
factors have been dropped, because as said we will be
only interested in distributions and not the absolute size
of the cross section. Unlike the case for Higgs production
from linearly polarized photons [33], there is no direct
observable signalling CP violation in the spin-0 case. For
the spin-2 case there is such a clear signature, being a
sin 2φ dependence of the cross section, which can only

CGC model predicts full polarization at small x:
A. Metz and J. Zhou, Phys. Rev. D 84, 051503 (2011)
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COSϴ DISTRIBUTION
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TRANSVERSE MOMENTUM 
DISTRIBUTION
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Φ DISTRIBUTION
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REMARKS

• gg->box->γγ background also φ dependent

• same can be done in the H->ZZ* channel 

17Mittwoch, 24. April 2013



CONCLUSIONS

• gluon polarization modifies 
both qT and ϕ distribution

• qT distribution modification 
different for positive/
negative parity states

• ϕ distribution modification 
different for spin-2/spin-0

• ϕ distribution modification 
different for the various 
spin-2 coupling scenarios

more info:
arXiv:1304.2654
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