

Electroweak boson production at LHCb

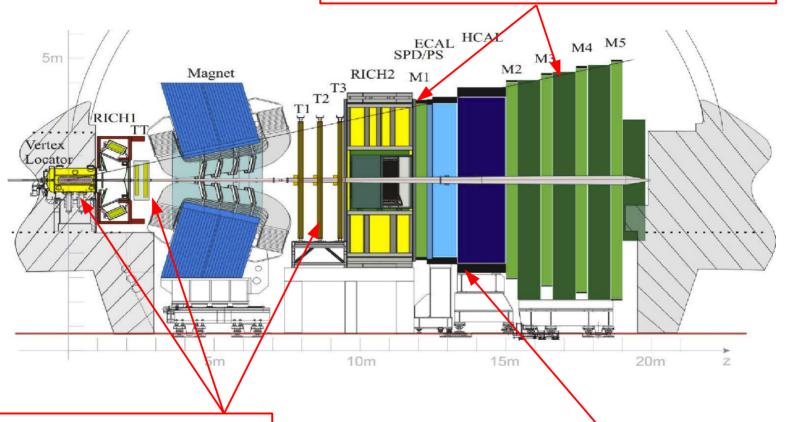
Stephane Tourneur (EPFL) (for the LHCb Collaboration)

DIS2013, Marseille 24-04-2013

Introduction

• $Z \rightarrow \mu\mu$, $Z \rightarrow ee$, $Z \rightarrow \tau\tau$

• $W \rightarrow \mu V$


Conclusion

The LHCb detector

Muon chambers:

Muon identification

Low trigger threshold: $m(\mu\mu)>2.5 \text{ GeV/c}^2$ (makes low mass D-Y analysis possible)

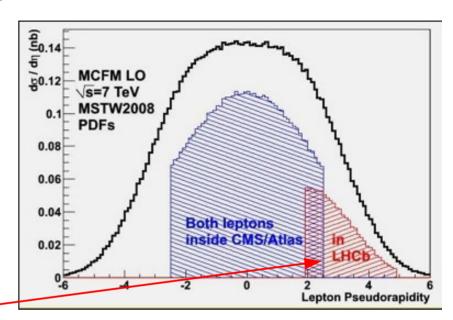
High-precision tracking system:

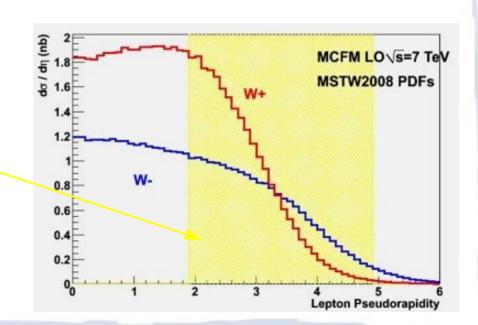
Δp/p = 0.4% at 5 GeV/c, 0.6% at 100 GeV/c Impact Parameter resolution: 20 μm for high pT tracks **Electromagnetic and Hadronic Calorimeters:**

Used in electroweak analyses for electron and hadron identification

2008 JINST 3 S08005

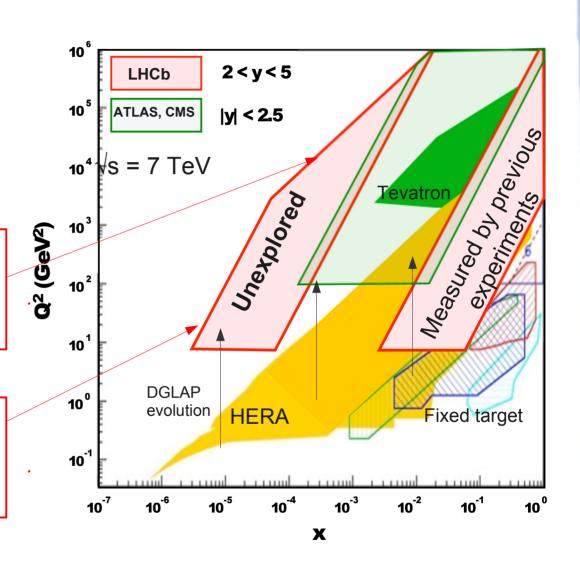
The LHCb detector coverage


LHCb instrumented region:


 $1.9 < \eta < 2.5$: overlap with ATLAS and CMS

 $2.5 < \eta < 5$: Unique to LHCb

 16% of W bosons produced inside LHCb



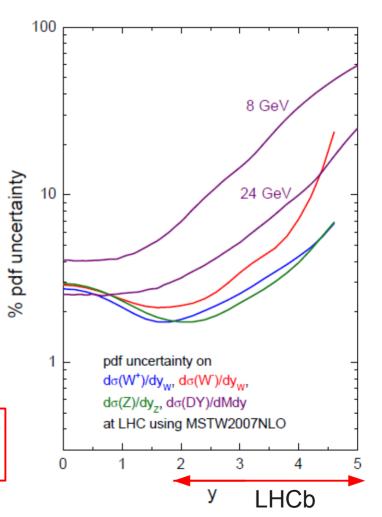
LHCb sensitivity to PDFs

 LHCb probes PDFs at low and high x:

Z, W cross-sections probe unexplored domain $10^{-4} < x < 10^{-3}$ at Q ≈ 100 GeV

low mass γ^* cross-section probes down to $x = 8.10^{-6}$ at Q = 5 GeV

 $Q^2=M^2$,


LHCb sensivity to PDFs

$$\underbrace{\sigma(x,Q^{2})}_{hadronic \ x-sec.} = \sum_{a,b}^{1} \int_{0}^{1} dx_{1} dx_{2} \underbrace{f_{a}(x_{1}Q^{2})f_{b}(x_{2}Q^{2})}_{PDFs \ 2-8 \%} \underbrace{\hat{\sigma}(x_{1},x_{2},Q^{2})}_{partonic \ x-sec.: NNLO \ 1 \%} \mathbf{x}_{1,2} = (M/\sqrt{s}) e^{\pm y}$$

- Electroweak measurements constrain poorly known PDFs and test NNLO partonic cross-sections
 - W^{+,-} and Z differential crosssections and ratios
 - $\gamma^* \rightarrow \mu \mu$ diff. cross-sections:

PDF uncertainties higher at low γ* mass

PDF uncertainties are higher in the LHCb kinematic region

LHCb electroweak measurements available

Z cross section measurements:

```
Z → μμ: 1 fb<sup>-1</sup> LHCb-CONF-2013-007

- Z → ee: 1 fb<sup>-1</sup> JHEP02 (2013) 106, arXiv:1212.4620

- Z → ττ: 1 fb<sup>-1</sup> JHEP01 (2013), 111, arXiv:1210.6289

(Z stands for Z/γ* all along the slides)
```

W^{+,-} cross section measurement:

```
- W → μv: 37 pb<sup>-1</sup> JHEP06(2012)058, arXiv:1204.1620
```

Comparison of W and Z LHCb measurement to ATLAS and CMS:

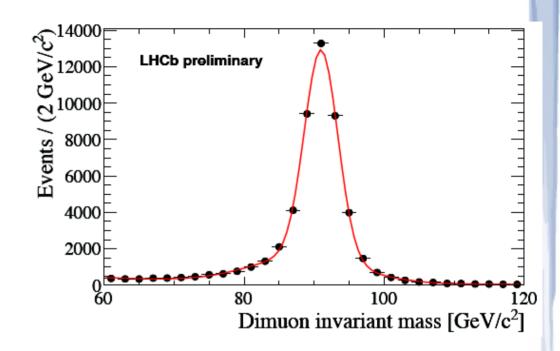
```
NEW! - LHCb-CONF-2013-05
```

- $\gamma^* \rightarrow \mu \mu$ differential cross section at low mass:
 - 37 pb⁻¹ LHCb-CONF-2012-013
- Z + jet cross section measurement:
 - Muon channel: 1 fb⁻¹ LHCb-CONF-2012-016

Not discussed today:(

All measurements made at $\sqrt{s} = 7$ TeV

Introduction

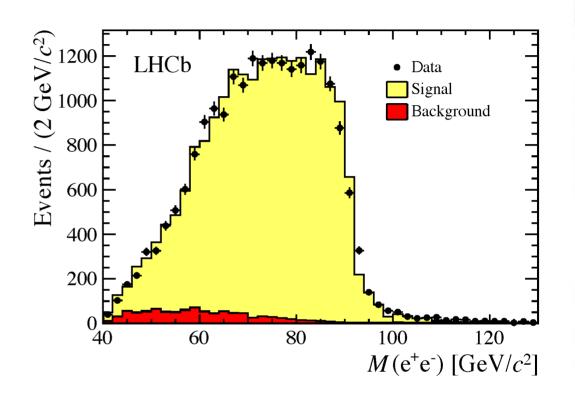

• $Z \rightarrow \mu\mu$, $Z \rightarrow ee$, $Z \rightarrow \tau\tau$

• $W \rightarrow \mu V$

Conclusion

$Z \rightarrow \mu \mu$

- Trigger: single muon
 - p_T > 10 GeV/c
- Muon selection:
 - $-2 < \eta < 4.5$
 - $p_{_{\rm T}} > 20 \text{ GeV/c}$
 - -60 < M(Z) < 120 GeV/c2



Purity: 0.9969 ± 0.0003

- 52632 observed Z → µµ candidates
- Backgrounds:
 - Heavy Flavour: 93 ± 13 events (from data)
 - Hadron mis-id: 25 ± 5 events (from data)
 - Electroweak and top: 35 ± 3 events (from simulation)

$Z \rightarrow ee$

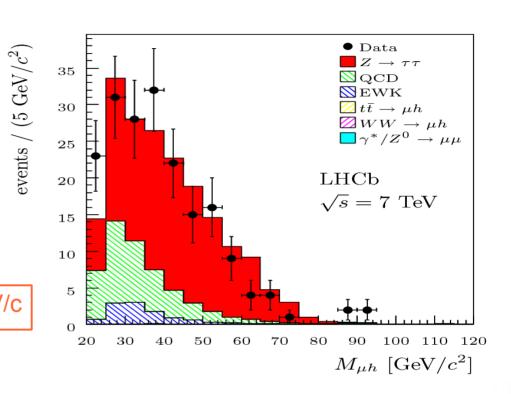
- Trigger: single electron
 - p_T > 10 or 15 GeV/c
- Electron selection:
 - $-2 < \eta < 4.5$
 - p_T > 20 GeV/c
 - M(ee) > 40 GeV/c2

- Backgrounds:
 - Hadron mis-id, Heavy Flavour: from same-sign e[±]e[±] data
 - Z→ττ and top: from simulation
- Purity: 95%

$Z \rightarrow \tau \tau$

Trigger:

$$p_{T}(\mu) > 10 \text{ GeV/c or } p_{T}(e) > 15 \text{ GeV/c}$$


Channels and selection:

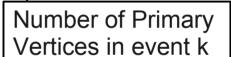
$$Z \rightarrow \tau_{\mu} \tau_{\mu}, \tau_{\mu} \tau_{e}, \tau_{e} \tau_{\mu}$$

$$Z \rightarrow \tau_{\mu} \tau_{h}, \tau_{e} \tau_{h} (1-\text{prong})$$

$$p_T(e/\mu) > 20 \text{ GeV/c}$$
 $p_T(e/\mu/h) > 5 \text{ GeV/c}$

$$2 < \eta(e/\mu) < 4.5$$
; $2.25 < \eta(h) < 3.75$
 $60 < M(\tau\tau) < 120 \text{ GeV/c}^2$

- Main backgrounds:
 - QCD and W+jet: from same sign ττ data
 - Z/γ*→μμ : from Z→μμ resonance and low impact parameter sidebands
- Purity: 65-70% in all channels
- Analysis extended to H→ ττ search (see P. Ilten's slides)


Z cross-section determination

• For $Z \rightarrow \mu\mu$, in a bin Δ , sum over range of the selected events:

$$\sigma(\Delta) = \frac{\rho \, fFSR(\Delta) \, fMGR(\Delta)}{LA} \sum_{k} \frac{1}{\varepsilon \, (\eta_{k}^{\mu+}, \eta_{k}^{\mu-}, PV_{k})}$$

- *ρ* : Purity
- L: Luminosity = $1.013 \pm 0.036 \text{ fb}^{-1}$
- A: Acceptance from simulation (~ 1)
- f_{FSR}: Final State Radiation correction (Herwig++)
- f_{MGR} : Correction factor for bin-bin migrations (Pythia + Geant simulation)
- ε: Event by event efficiencies depending on number of Primary Vertices and muon η

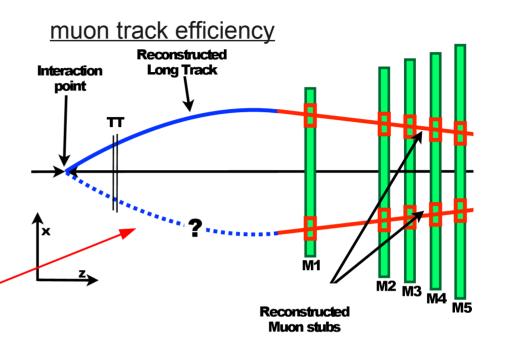
-
$$\varepsilon = \varepsilon_{\text{trigger}} \cdot \varepsilon_{\text{tracking}} \cdot \varepsilon_{\text{identification}}$$

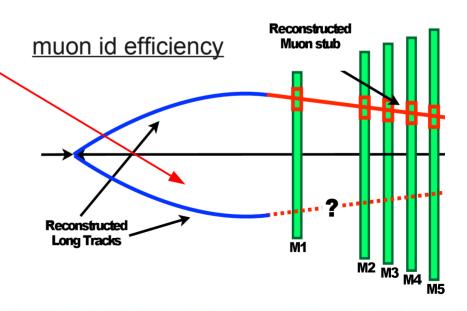
Efficiencies

- $\mathcal{E} = \mathcal{E}_{\text{trigger}} \cdot \mathcal{E}_{\text{tracking}} \cdot \mathcal{E}_{\text{lepton identification}}$
- Determined with tag & probe methods in the Z data sample

Tag: well identified e/µ

Probe:


trigger eff.: identified e/µ

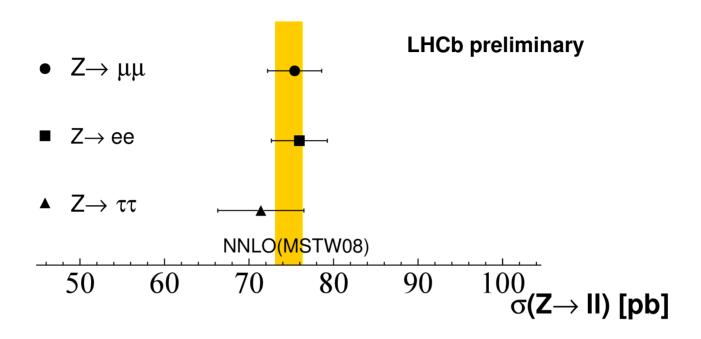

muon tracking eff.: muon stubs

identification eff.: reconstructed track

Electron tracking eff. from MC

- Typical efficiencies:
 - Muon tracking: 90%
 - Muon id: 99%
 - Muon trigger for $Z \rightarrow \mu\mu$: 90%
 - electron id: 92%

$Z \rightarrow \mu\mu$: Systematic uncertainties

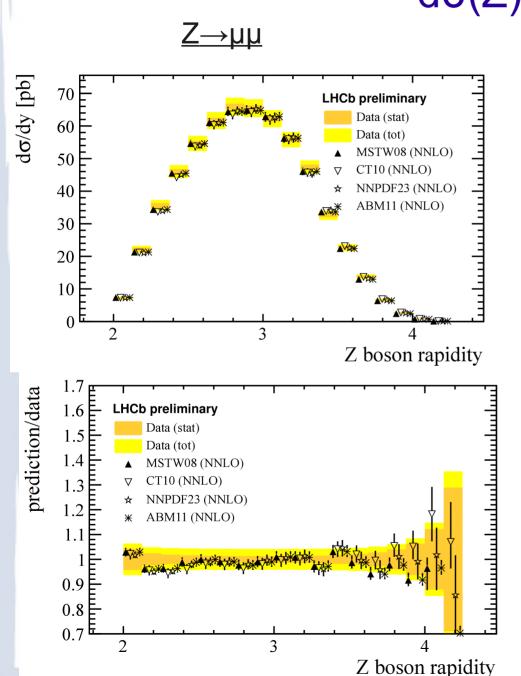

LHCb preliminary

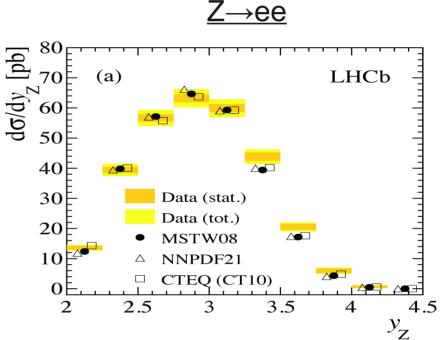
Source	Uncertainty (%)
Tracking efficiency	± 1.1
Global Event Cut efficiency	± 1.1
Muon trigger efficiency	± 0.5
Muon-id efficiency	± 0.5
Magnet polarity	± 1.6
Bin-to-bin migrations	± 0.7
FSR corrections	± 0.2
Signal purity	± 0.03
TOTAL	± 2.5
Luminosity	± 3.5

Mostly statistically based : will decrease with more data

Systematic uncertainties for other Z channels in backup

Z cross-sections: Results



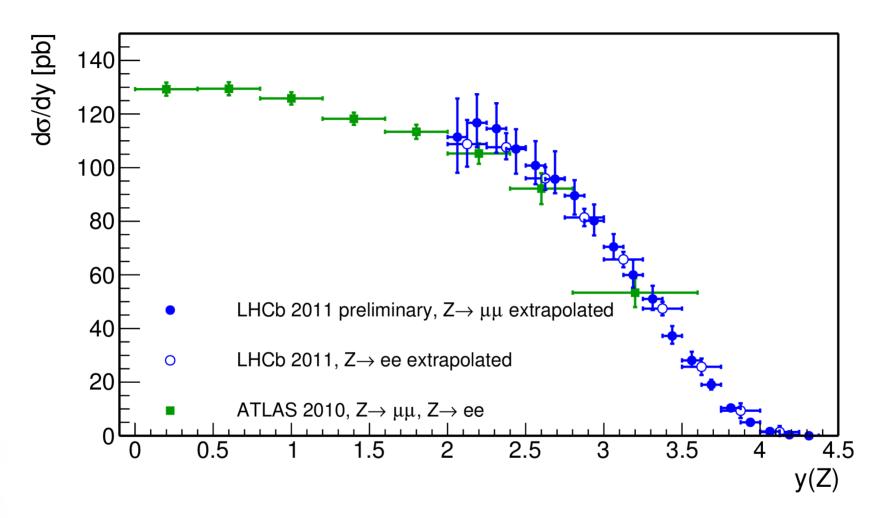

Inclusive Z cross section for leptons with $p_T > 20$ GeV/c and 2.0 < eta < 4.5 and 60 < mass(Z) < 120 GeV/c²:

$$\sigma(pp \to Z \to \mu\mu) = 75.4 \pm 0.3(stat) \pm 1.9(sys) \pm 2.6(lum) pb$$

 $\sigma(pp \to Z \to ee) = 76.0 \pm 0.8(stat) \pm 2.0(sys) \pm 2.6(lum) pb$
 $\sigma(pp \to Z \to \tau\tau) = 71.4 \pm 3.5(stat) \pm 2.8(sys) \pm 2.5(lum) pb$

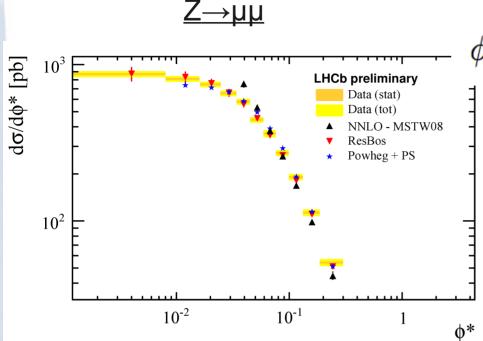
Good agreement between channels and with NNLO prediction from FEWZ using MSTW08 PDF

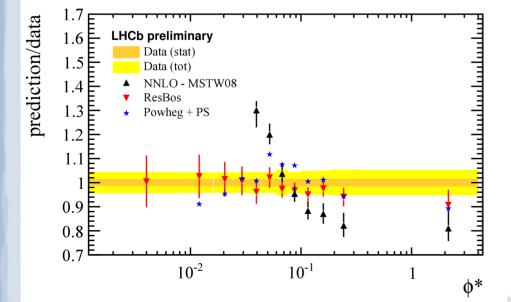
$d\sigma(Z)/dy$

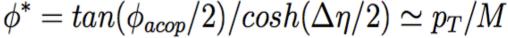


Good agreement with NNLO predictions from FEWZ using several PDFs

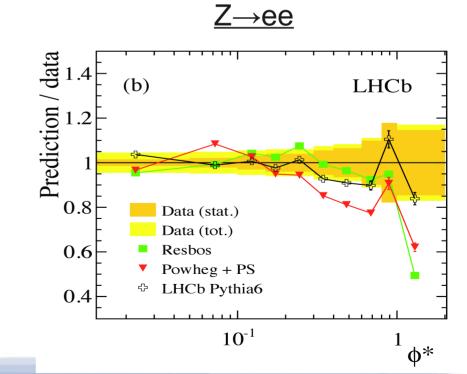
Present LHCb systematic error comparable with PDF systematics


$d\sigma(Z)/dy$



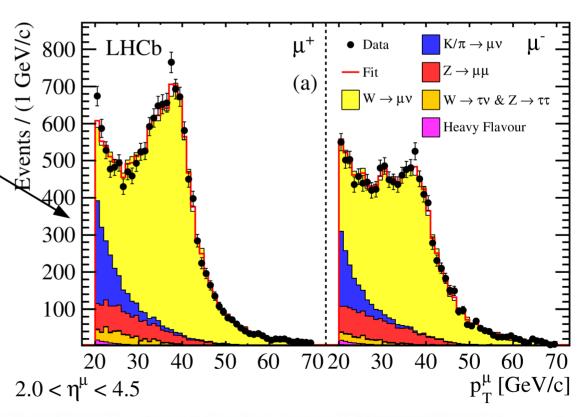

- LHCb cross sections extrapolated to the ATLAS fiducial volume with FEWZ at NLO
- Agreement with ATLAS result observed

$d\sigma(Z)/d\Phi^*$



- Φ*: variable less dependent on momentum resolution
- Φ* distributions described better by Resbos and Powheg than by NNLO (FEWZ)

Introduction

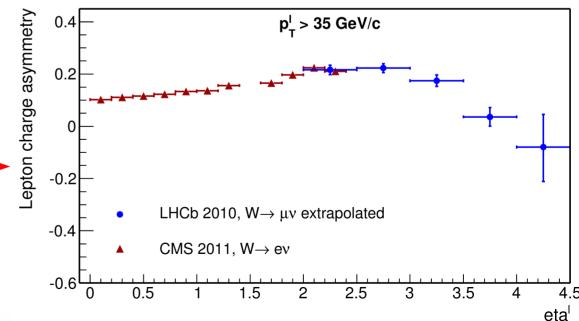

• $Z \rightarrow \mu\mu$, $Z \rightarrow ee$, $Z \rightarrow \tau\tau$

• $W \rightarrow \mu v$

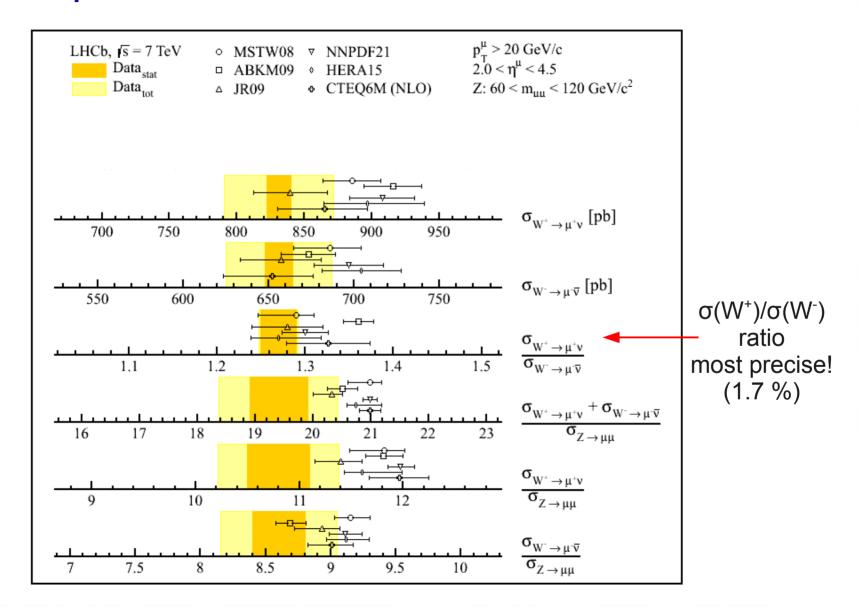

Conclusion

W→µv analysis summary

- Trigger: single muon p_¬>10 GeV/c
 Dataset: 37 pb⁻¹, √s = 7 TeV
- Fiducial volume:
 - $-2 < \eta (\mu) < 4.5$
 - $-20 < p_{\tau}(\mu) < 70 \text{ GeV/c}$
- Purity:
 - from a template fit to the muon p_⊤ distribution
 - around 78% in both W⁺ and W⁻ samples
- N candidates:
 - 14610 W⁺
 - 11618 W⁻



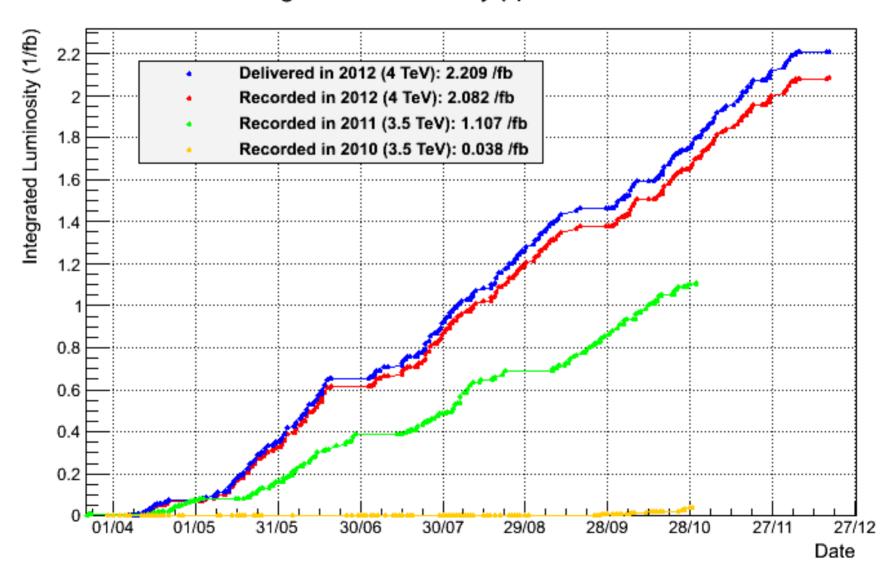
W→µv analysis summary



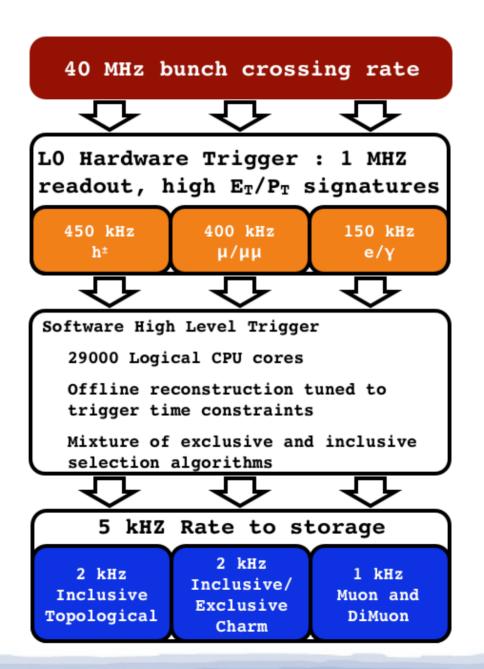
- W^{+,-} cross sections extrapolated and compared to ATLAS
- Good agreement in overlap region

- W Lepton charge asymmetry extrapolated and compared to CMS
- Good agreement in overlap region

Summary of W measurements and comparison with PDF predictions

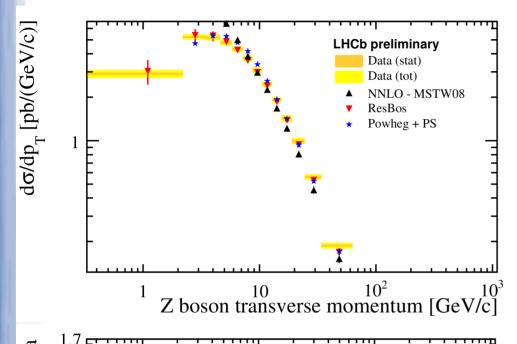


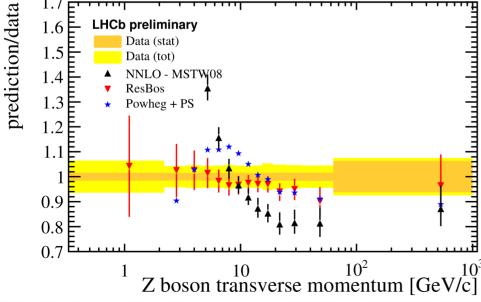
Conclusion and outlook


- Electroweak boson cross section measurements at LHCb have been presented in Z → μμ, ee, ττ channels and W → μν, as well as ratios
- These results have been compared to fixed-order QCD calculations with different PDFs
 - NNLO in agreement with measured inclusive cross-section and Z rapidity distributions
 - RESBOS and POWHEG model $Z p_{\tau}$ and Φ^* best
- Future improvements include:
 - 1 fb⁻¹ W→ μ v measurements at 7 TeV forthcoming
 - 8 TeV dataset analysis (~2 fb⁻¹)
 - Profit from more precise luminosity measurement
 - Sensitivity to lower x with low mass DY
 - Most systematics are statistically based
 - Reduced with more data

Backup

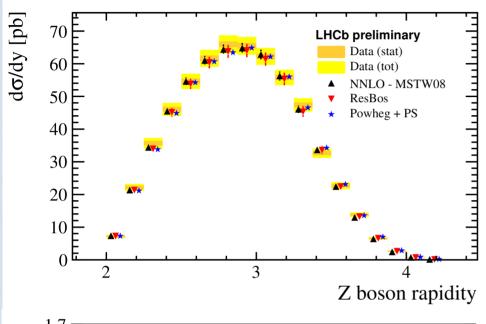
LHCb Integrated Luminosity pp collisions 2010-2012


LHCb Trigger overview

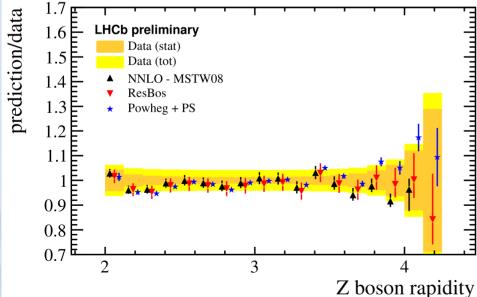

Global Event Cut (GEC)

- At LHCb, Global Event Cuts are applied in the trigger in order to prevent very large events from dominating the processing time
- Most important cut is on the multiplicity of SPD hits:
 - N_{SPD} < 600 in the single electron and muon trigger cases (used for Z→ee and Z→μμ)
- Efficiency measured from data:
 - Using Z→μμ events triggered alternatively with a dimuon trigger, for which a
 looser GEC is set (N_{SPD} < 900)
 - 95% in the electron case
 - 96% in the muon case

$d\sigma(Z\rightarrow \mu\mu)/dp_{\tau}$



 Observed Z p_T distributions compared to NLO (Resbos, Powheg) and NNLO calculations (FEWZ)



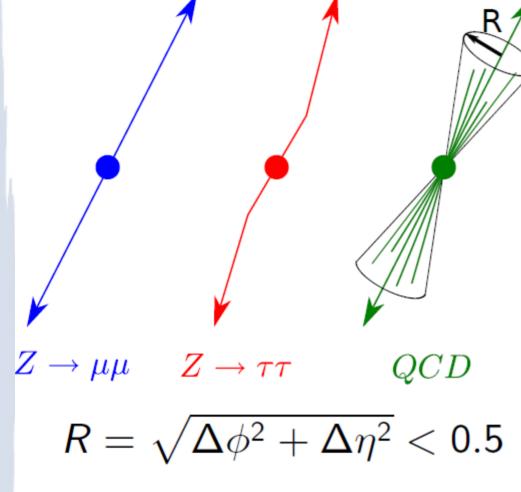
Good agreement observed

$d\sigma(Z\rightarrow \mu\mu)/dy$

 Observed Z rapidity distributions compared to NLO (Resbos, Powheg) and NNLO calculations (FEWZ)

Good agreement observed

$Z \rightarrow ee$: efficiencies and uncertainties


$$\sigma(pp \to Z \to e^+e^-) = \frac{N(e^+e^-) - N(e^\pm e^\pm)}{\epsilon_{GEC} \cdot \epsilon_{trig} \cdot \epsilon_{track} \cdot \epsilon_{kin} \cdot \epsilon_{PID} \cdot \int \mathcal{L}dt} \cdot f_{FSR} \cdot f_{MZ}$$

 $f_{_{\rm MZ}}$: correction factor to make up for dielectron events outside the mass range 60 < M(ee) < 120 GeV which pass the event selection. Estimated from simulation.

Quantity	Valeur ± uncertainty <u>LHCb</u>	
N_{bkg} from same sign ev. = $N(e^{\pm}e^{\pm})$	974 ± 78	
E GEC	0.947 ± 0.004	
E trig	0.715 ± 0.021 (I) / 0.899 ± 0.003 (II)	Two data
ε _{track}	0.913 ± 0.015	periods: I
ε _{kin}	0.500 ± 0.007	
ε _{PID}	0.844 ± 0.011	
f _{FSR}	1.049 ± 0.005	
F _{MZ}	0.967 ± 0.001	
Luminosity (pb ⁻¹)	581 ± 20 (I) / 364 ± 13 (II)	

periods: I and II

$Z \rightarrow \tau\tau$: Tau identification

$$I = rac{p_T^{\ell} - p_T^{cone}}{p_T^{\ell} + p_T^{cone}} \quad A_{p_T} = rac{p_T^1 - p_T^2}{p_T^1 + p_T^2}$$

$$I_{pT} = p_T^{\ \ l} - p_T^{\ \ cone}$$

- Use the fact that Tau tracks are produced isolated with large impact parameters:

$$I_{pT}$$
 < 1 GeV/c for $\tau_l \tau_l$
 I_{pT} < 2 GeV/c for $\tau_l \tau_h$

IPS: Impact Parameter Significance:
Sum of the IP of the two taus
divided by their combined
uncertainty

IPS > 9 for
$$\tau_l \tau_h$$
 and $\tau_{\mu} \tau_{\mu}$

$$A_{_{PT}} > 0.3$$
 for $\tau_{_{\mu}}\tau_{_{\mu}}$

$Z \rightarrow \tau\tau$: Systematic uncertainties

Table 2: Systematic uncertainties expressed as a percentage of the cross-section for each $Z \to \tau \tau$ analysis stream. Contributions from acceptance \mathcal{A} , branching fractions \mathcal{B} , number of background events $N_{\rm bkg}$, reconstruction efficiencies $\varepsilon_{\rm rec}$, and selection efficiencies $\varepsilon_{\rm sel}$ are listed. The superscripts on $\varepsilon_{\rm trk}{}^{(i)}$ and $\varepsilon_{\rm id}{}^{(i)}$ indicate the first or second τ lepton decay product candidate. The percentage uncertainties on the cross-section for $N_{\rm bkg}$ are quoted for each individual background, as well as the total background. The efficiency uncertainties are split in a similar fashion.

Stream		$\Delta \sigma_{pp \to Z \to \tau \tau} \ [\%]$				
		$ au_{\mu} au_{\mu}$			$ au_{\mu} au_{h}$	$ au_e au_h$
\mathcal{A}		1.48	1.61	1.32	1.10	1.11
\mathcal{B}		0.46	0.32	0.32	0.32	0.33
	$N_{ m QCD}$	4.33	0.80	3.08	0.40	0.92
	$N_{ m EWK}$	4.22	1.54	1.52	0.40	0.72
$N_{ m bkg}$	$N_{tar{t}}$	0.02	0.08	0.12	0.00	0.58
	N_{WW}	0.02	0.14	0.13	0.09	0.08
	N_Z	8.00	_	_	0.22	0.23
Total	$N_{ m bkg}$	10.03	1.75	3.44	0.61	1.32
	$\varepsilon_{\mathrm{GEC}}$	0.10	0.10	0.10	0.10	0.10
	$\varepsilon_{ m trg}$	0.88	0.71	2.29	0.72	4.30
$\varepsilon_{ m rec}$	$\varepsilon_{\mathrm{trk}}^{(1)}$ $\varepsilon_{\mathrm{trk}}^{(2)}$ $\varepsilon_{\mathrm{id}}^{(1)}$	0.71	0.74	3.67	0.79	3.67
€ rec	$\varepsilon_{\rm trk}^{(2)}$	0.34	3.67	0.61	1.76	1.68
	$\varepsilon_{id}^{(1)}$	0.38	0.28	1.72	0.29	1.73
	$\varepsilon_{\rm id}^{(2)}$	0.78	0.18	0.56	0.03	0.09
Total $\varepsilon_{\rm rec}$		1.47	4.21	4.73	2.08	6.15
$\varepsilon_{ m sel}$	$\varepsilon_{\mathrm{kin}}$	-	1.04	2.89	_	1.91
	$\varepsilon_{I_{p_{\mathrm{T}}}}$	1.79	1.91	3.19	1.65	2.75
	$\varepsilon_{ \Delta\Phi }$	1.08	1.03	1.86	0.60	0.97
	$\varepsilon_{\mathrm{IPS}}$	2.70	_	_	1.92	2.85
	$\varepsilon_{A_{p_{\mathrm{T}}}}$	2.03	_	_	_	_
Total $\varepsilon_{\rm sel}$		3.97	2.41	4.69	2.60	4.50
Total systematic		11.13	5.41	7.56	3.88	7.88
Total systematic		11.13	5.41	7.56	3.88	7.88

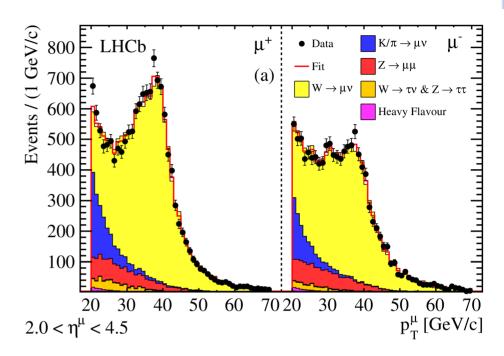
LHCb

$Z \rightarrow \tau \tau$: Acceptance, efficiencies, number of events

Table 1: Acceptance factors, branching fractions, selection efficiencies, numbers of background and observed events for each $Z \to \tau \tau$ analysis stream.

LHCb				
	L	\vdash	1	b

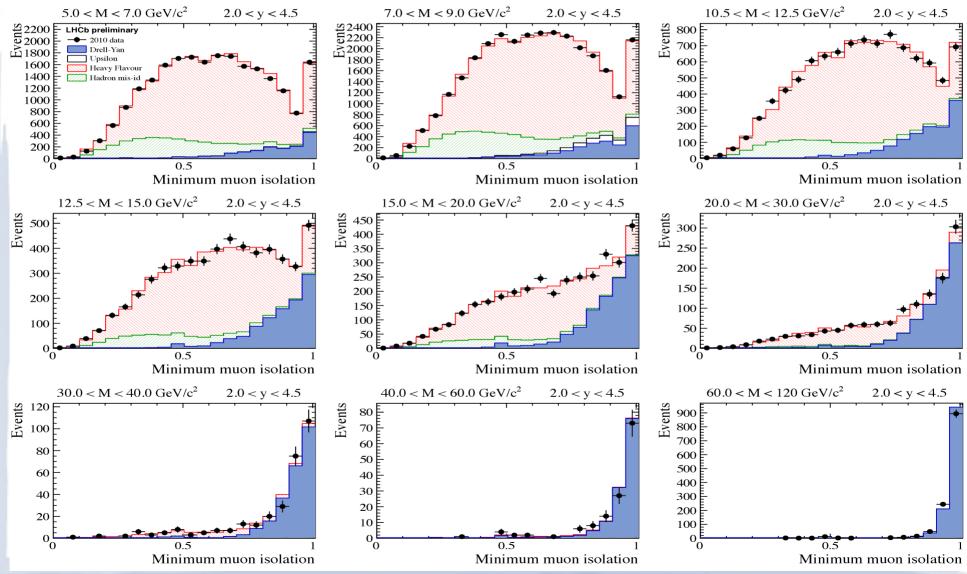
Stream	\mathcal{A}	B [%]	$arepsilon_{ ext{sel}}$	$N_{ m bkg}$	N
$ au_{\mu} au_{\mu}$	0.405 ± 0.006	3.031 ± 0.014	0.138 ± 0.006	41.6 ± 8.5	124
$ au_{\mu} au_{e}$	0.248 ± 0.004	6.208 ± 0.020	0.517 ± 0.012	129.7 ± 4.9	421
$ au_e au_\mu$	0.152 ± 0.002	6.208 ± 0.020	0.344 ± 0.016	56.6 ± 3.3	155
$ au_{\mu} au_{h}$	0.182 ± 0.002	16.933 ± 0.056	0.135 ± 0.004	53.3 ± 0.8	189
$ au_e au_h$	0.180 ± 0.002	17.341 ± 0.057	0.082 ± 0.004	36.6 ± 0.9	101

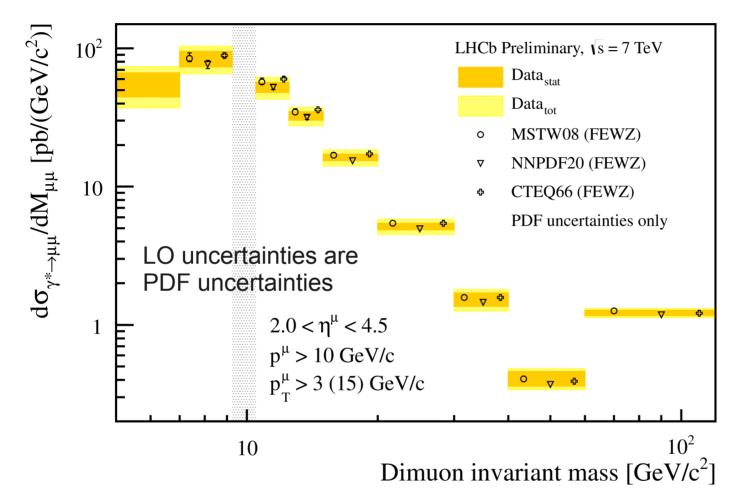

Hadron identification efficiency: Obtained from minimum bias data
 Assuming the highest p_T track to be a hadron,
 compute the probability for it to pass the hadron identification efficiency requirements (E(HCAL)/p > 0.05)

W→µv analysis

Purity:

- from a template fit to the muon pT distribution:


	Shape	Norm.
W →µν	Simulation	Fit
K/π decay in flight	Data	Fit
γ*/Z→μμ	Simulation	Fixed
W→τν , Z→ττ	Simulation	Fixed
Heavy Flavour	Data	Fixed


- around 78% in both W⁺ and W⁻ samples

Drell-Yan γ* → μμ

37 pb⁻¹, 2 < $\eta(\mu)$ < 4.5 , 5 < M($\mu\mu$) < 120 GeV/c² Signal purity from template fits to the minimum muon isolation distributions:

Drell-Yan $\gamma^* \rightarrow \mu\mu$ mass distribution

- Mass region around Upsilon (Υ) meson excluded
- The NLO FEWZ predictions reproduce the data well