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Motivations

@ One of the important longstanding theoretical questions raised by QCD is
its behaviour in the perturbative Regge limit s > —t

@ Based on theoretical grounds, one should identify and test suitable
observables in order to test this peculiar dynamics

t
ha(MF) (M)
<— vacuum quantum
S —
number
ha(M3) hy (M)

hard scales: M7, M3 > Ajop or Mi?, M5? > Adcp or t > Abep
where the t—channel exchanged state is the so-called hard Pomeron
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The different regimes of QCD

Non-perturbative

oce\@

Saturation 0.

=@
DGLAP

In Q>
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Resummation in QCD: DGLAP vs BFKL

Small values of ais (perturbation theory applies due to hard scales) can be
compensated by large logarithmic enhancements.
= resummation of >~ (as InA)" series

DGLAP BFKL

krn+1 < krn z1, kr1 Tnt1 K Tn z1, kr1

T2, k1o x2, ko

strong ordering in kp strong ordering in x

2
> (as In ff—z)" >(as In )"

When /s becomes very large, it is expected that a BFKL description is needed
to get accurate predictions
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How to test QCD in the perturbative Regge limit?

What kind of observables?

@ perturbation theory should be applicable:
selecting external or internal probes with transverse sizes < 1/Agcp or by
choosing large ¢ in order to provide the hard scale
p—0

9 governed by the soft perturbative dynamics of QCD

m =0
and not by its collinear dynamics wﬁrrri/o -0
m =0

= select semi-hard processes with s > p2, > A%CD where p%, are
typical transverse scale, all of the same order
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The specific case of QCD at large s

QCD in the perturbative Regge limit

The amplitude can be written as:

~ ~s(aslns) ~ s (as Ins)?

this can be put in the following form :

< Impact factor
< Green's function

< Impact factor
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Higher order corrections

@ Higher order corrections to BFKL kernel are known at NLL order (Lipatov
Fadin; Camici, Ciafaloni), now for arbitrary impact parameter
as Yy, (as Ins)" resummation

@ impact factors are known in some cases at NLL

@ v* — 4* at t = 0 (Bartels, Colferai, Gieseke, Kyrieleis, Qiao;
Balitski, Chirilli)

o forward jet production (Bartels, Colferai, Vacca)

¢ inclusive production of a pair of hadrons separated by a large interval of
rapidity (Ivanov, Papa)

@ v} — pr in the forward limit (Ivanov, Kotsky, Papa)
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Mueller-Navelet jets: Basics

Mueller-Navelet jets

@ Consider two jets (hadrons flying within a narrow cone) separated by a
large rapidity, i.e. each of them almost fly in the direction of the hadron
“close” to it, and with very similar transverse momenta

@ in a pure LO collinear treatment, these two jets should be emitted back to
back at leading order: A¢p — 1w =0 (A¢p = ¢1 — P2 = relative azimuthal
angle) and k1 1=Fk.12. There is no phase space for (untagged) emission
between them

p(m)\L

Yy large - rapidity

| jeta (ki2, ¢2)

Beam axis

¢7 . zero rapidity
”—

large + rapidity
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Master formulas

kr-factorized differential cross-section

do
= [ dond d’k; d%k
dlks1|d|ks2| dys1 dyse / dy1dd 2 / L d%k,

ki, i1, c0 x ®(kyi,zs1, —ki)
X G(kl, k2, §)
kj2, 02,772 x ®(ky2,x2, ko)

with ®(kjo, xj2, ko) = [dxa f(z2)V(ke,z2)  f = PDF zy = Eileys
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Studies at LHC: Mueller-Navelet jets

@ in LL BFKL (~ > (asIns)™), the emission between
these jets leads to a strong decorrelation between the
jets, incompatible with pp Tevatron collider data

@ up to recently, the subseries s > (s Ins)™ NLL was
included only in the Green's function, and not inside the
jet vertices
Sabio Vera, Schwennsen
Marquet, Royon

@ the importance of these corrections was not known
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Results: symmetric configuration (y/s = 7 TeV)

Results for a symmetric configuration

In the following we show results for

@ 35GeV < |kji|, k2| < 60 GeV

9 0<y1,y2 <47
These cuts allow us to compare our results with preliminary results from CMS
(see talk by A. Knutsson).

note: unlike experiments we have to set an upper cut on |kyi| and |kj2|. We have
checked that varying this cut doesn’t modify our results significantly.
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Cross-section

o [nb]
10000 T T T T T
1000
100 35GeV < |kji| < 60 GeV
35GeV < |ky2| < 60 GeV
10
0<y1 <47
1 0<y2 <4.7

0.1
o pure LL

LL vertex + NLL Green fun.
NLL vertex + NLL Green fun.

0.01 —

0.001 L L L L L Y
4 5 6 7 8 9

The effect due to NLL corrections to the jet vertex is of the same order of magnitude
as the effect due to NLL corrections to the Green’s function.
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Cross-section: stability with respect to so and ur = pr changes

o [nb]
10000 T T T T T
1000 —
100 | 35GeV < k1| < 60 GeV
T 35GeV < |kja| < 60 GeV
10 ]
T 0<yi <4.7
1 — 0<ys <47
0.1 = ——— NLL vertex + NLL Green fun. —
ro E = pp/2
BF = 2pF
0.01 = oo VS0 = \/50/2
r V50 = 2¢/50 ¥
0.001 | | | | | Y
4 5 6 7 8 9

Our result is rather stable w.r.t sp and p choices.
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Relative variation of the cross section when using other PDF sets than MSTW 2008

Ao
o
ST T T T T ]
0.4 - —— ABKMO09 —
- —— CT10 d
0.3~ —— HERAPDF15 ]
02 - NNPDF 21 h 35GeV < |kyi| < 60 GeV
r . 35GeV < |kja| < 60 GeV
0.1 [— —
= ] 0<y1 <4.7
i ] 0<y2 <47
01 \/ Yo
02 —
03| —
-04 - ]
05 L1 I . I . I . I . L1y
4 5 6 7 8 9
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Azimuthal correlation (cos ¢)

35GeV < |kj1| < 60 GeV

08 = 7 35GeV < |ka| < 60 GeV

0<y1 <4.7
0<ys2 <4.7

0.2 pure LL
LL vertex + NLL Green fun.
NLL vertex + NLL Green fun.

0 | | | | | %
4 5 6 7 8 9

@ The effect of NLL corrections to the jet vertex is very important
@ At full NLL accuracy, {(cos ¢) is very flat in Y and very close to 1.
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Azimuthal correlation (cos ¢)

35GeV < |kj1| < 60 GeV
35GeV < |kja| < 60 GeV

0<yi <4.7
0<ys2 <4.7

pure LL
0.2 LL vertex + NLL Green fun.
NLL vertex + NLL Green fun.
r = CMS data
o | | | | | %
4 5 6 7 8 9

@ None of the BFKL computations describe the data very well
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Azimuthal correlation (cos ¢)

(cos o)
12 T T T T T
K XX XXX XX XXX KKK XK KK A 1
1 & RRRRLIEXN P
RIS e RN
- VYXXA><2§><><><><><><><><><><><><><><><><><><><><>< <R
os - iR
i XX
oal X
0.2 - —
NLL vertex + NLL Green fun.
o L] CMS data 1
o | | | | |
4 5 6 7 8 9

@ None of the BFKL computations describe the data very well

35GeV < |kj1| < 60 GeV
35GeV < |kja| < 60 GeV

0<y1 <4.7
0<ys2 <4.7

@ The result at NLL is still rather dependent on the choice of sgp and ur = ur
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Relative variation of {(cos ¢) when using other PDF sets than MSTW 2008

A{cos p)
(cos @)
T T T T T T T T T T
0.04 — —— ABKMO09 —
— CT10
 —— HERAPDF 15 4
0.02 NNPDF 2.1 35GeV < |ky1| < 60 GeV
35GeV < |kj2| < 60GeV
0 _ 0<y1 <4.7
0<y2 <4.7
-0.02 —
-0.04 — -]
. | . | . | . | . | Y
4 5 6 7 8 9
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Azimuthal correlation (cos 2¢)

(cos 2¢)
. | | | | |
- pure LL p
LL vertex + NLL Green fun.
0.8 NLL vertex + NLL Green fun. _
PRI K s CMS data =
S 35GeV < |ksi| < 60 GeV
35GeV < |ky2| < 60 GeV
0<y <4.7
0<y2 <4.7
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Azimuthal correlation (cos 3p)

(cos 3p)
! T T T T T
- pure LL p
LL vertex + NLL Green fun. ————
08 NLL vertex + NLL Green fun. _
’ CMS data =

35GeV < |kj1| < 60 GeV
35GeV < |kja| < 60 GeV

0<yi <4.7
0<ys <47

Y

Taking into account the uncertainty associated with the choice of the scales, NLL
BFKL is quite close to the data for Y 2> 6.
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Azimuthal correlation (cos 2¢)/(cos ¢)

(cos 2¢) (cos o)

1 T T T T T

35GeV < |kj1| < 60 GeV
35GeV < |kyz| < 60 GeV

0<y <4.7
0<y2 <4.7

02 pure LL

: LL vertex + NLL Green fun.
NLL vertex + NLL Green fun.
= CMS data

0 | | | | | %
4 5 6 7 8 9

The observable (cos 2¢)/(cos ) is described reasonably well by NLL BFKL.
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Azimuthal correlation (cos 3¢)/{cos 2¢)

(cos 3p) /{cos 2¢)

1 T T T T T

35GeV < |kji| < 60GeV
35GeV < |kj2| < 60 GeV

0<y <4.7
0<y2 <4.7

02 pure LL ]
: LL vertex + NLL Green fun.
NLL vertex + NLL Green fun.
B = CMS data T
o | | | | | %
4 5 6 7 8 9

The 3 different BFKL computations for (cos 3¢p)/(cos 2¢) are quite close to each other

22/23



Conclusion

9@ We have deepened our complete NLL analysis of Mueller-Navelet jets
@ First comparison to data taken at LHC for the azimuthal correlations

@ The effect of NLL corrections to the vertices is dramatic, similar to the
NLL Green's function corrections

@ For the cross-section:
makes prediction more stable with respect to variation of scales i and sg

@ Surprisingly small decorrelation effect: NLL BFKL underestimates the
decorrelation

@ (cosp), (cos2¢) and (cos3y) are still rather dependent on the choice of
the scales
Ratios of these quantities are more stable

@ For (cos2¢p)/(cos ¢), data is quite well described by NLL BFKL

@ Mueller Navelet jets provide much more complicate observables than
expected
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Results: symmetric configuration

Azimuthal distribution

Computing {cos(n¢)) up to large values of n gives access to the angular
distribution

%Z_; — % {1 —|—22cos (ng) (cos (ngb))}

n=1

This is a quantity accessible at experiments like ATLAS and CMS
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Results: symmetric configuration

Azimuthal distribution

1ldo 1ldo
o dg o dg

T T T T T
14 v - 142
L v ] L
12~ Y — 12—
1 — 1
08 — 08
06— — 06—
= — 04—
02
o0 n E

1 1 1 1 1 1 1 1 1 1

35GeV < |kji1| < 60GeV
35GeV < |kyz2| < 60 GeV

0<y1 <4.7
0<ya2 <4.7

R
L A = i

&
o

o
~
w

NLL vert. + NLL Green’s fun.
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sults: symmetric configuration

Azimuthal distribution: stability with respect to sp and ur = pr

al-

da. ldo
de v d
T T T T T T
* ! 4= LL vertices + NLL Green's fun, ——— |
L E t o> e /2 b
- m 12 e > 2nr -
[ ] [ Mo ]
VT - 25
L - 1 -
— — 08 —
L - 06— -
L ] L I ]
- 1 «f JAY .
— 02
0 I | | | 1 I | | | | 1
3 2 1 0 1 3 3 2 1 0 1 2 3
pure LL LL vertices + NLL Green’s fun.

35GeV < |kui| < 60 GeV
35GeV < |ky2| < 60GeV

0<y <4.7
0<y2 <4.7

integrating on the bin:
6<Y =y1+y2<94

do
¢

T T T T T

[~ NLL vert. + NLL Green's fun — 7
r e o ur /2 B
L i 4
L VAT VA2 ]

VAT 20

7—/—/{

3 - B

1y
o
~

NLL vert. + NLL Green’s fun.
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Results: asymmetric configuration (1/s = 7 TeV)

Results for an asymmetric configuration

In this section we choose the cuts as
@ 35GeV < kji| < 60GeV
9 50GeV < |kj2| < 60GeV
9 0<y1,y2 <47

Such an asymmetric configuration allows us to do a comparison with results
obtained by fixed order calculation.
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Results: asymmetric configuration

Azimuthal correlation (cos ¢): fixed order NLO versus NLL BFKL

35GeV < k1| < 60 GeV
50 GeV < |kj2| < 60 GeV

0<yi <4.7
0<ys2 <47

pure LL
———— LL vertex + NLL Gree

0.2 = NLL vertex + NLL Green fun.
i e Dijet
0 | | | | | Y
4 5 6 7 8 9

dots = based on the fixed order NLO parton generator Dijet (thanks to M. Fontannaz)
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Results: asymmetric configuration

Azimuthal correlation: (cos ¢)

35GeV < k1| < 60 GeV
50 GeV < |kj2| < 60 GeV

0<yi <4.7
0<ys <47

04 — NLL vertex 4+ NLL Green fun. LT
"""" pE = pp/2 5
BE = 2uF
02 f V30 = V50/2 p.
/50 = 24/50 "
L . Dijet N

0 | | | | | Y
4 5 6 7 8 9

@ Putting (almost) the same scale, exactly the same cuts, we get a
difference between fixed order NLO and NLL BFKL for 4.5 <Y < 8.5

@ This difference is washed-out because of sy and u dependency
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Results: asymmetric configuration

Azimuthal correlation (cos 2¢p)/(cos ¢): fixed order NLO versus NLL BFKL

(cos 26}/ (cos o)
0.9
0.8
0.7
35GeV < |kji| < 60 GeV
06 50 GeV < |kj2| < 60 GeV
0.5
0<y1 <4.7
0.4 0<y2 <4.7
0.3
-_ ——— pure LL _-
0.2 ——— LL vertex + NLL Green fun.
B NLL vertex + NLL Green fun. T
0.1 | e Dijet —
0 | | | | | Y
4 5 6 7 8 9

dots = based on the fixed order NLO parton generator Dijet (thanks to M. Fontannaz)

31/23



Results: asymmetric configuration

Azimuthal correlation: (cos2)/(cos ¢)

(cos 2¢) /(cos ¢)
12 T T T T T

35GeV < |kj1| < 60 GeV
50 GeV < |kja| < 60 GeV

0<yi <4.7
0<ys <47
04— NLL vertex + NLL Green fun. 1
Lo nE = pp/2 i
BF = 2pF
02 - 50 = V/50/2 ]
/50 = 2¢/50
- . Dijet .
o | | | | | Y
4 5 6 7 8 9

@ fixed order NLO and NLL BFKL differ significantly for 4.5 <Y < 8

@ This result is rather stable w.r.t so and p choices.
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Results: integrated kj at Tevatron (|ksi| > 20GeV, [kja| > 50GeV) +/s = 1.8 TeV

Comparison in the simplified NLL Green's function + LL jet vertices scenario

@ The integration f,:j ~ dky can be performed analytically

@ A comparison with the numerical integration based on code provides a
good test of stability, valid for large YV’

(cos ¢)
'R T ]
- x -
L + x .
08— x _]
i N ]
C - ]
0.6 — + x X —
C *
C N ]
0.4 — —
i N ]
C . ]
C . ]
02 — —
oL \ \ \ \ \ 11y
0 1 2 3 4 5 6
blue: LL
magenta: NLL Green’s function + LL jet vertices scenario Sabio Vera, Schwennsen
X: numerical dk; integration kj1 > 20 GeV and kjo > 50 GeV

33/23



The specific case of QCD at large s

QCD in the perturbative Regge limit

@ Small values of aus (perturbation theory applies due to hard scales) can be
compensated by large In s enhancements. = resummation of
> .(as Ins)™ series (Balitski, Fadin, Kuraev, Lipatov)

T ()

~ ~ s(aslns) ~ 5 (s Ins)?

@ this results in the effective BFKL ladder

" reggeon = "dressed gluon"

effective vertex

h1 ho— th 1 »(0)—1
ghihavanything _ Ly 4 ap(©)
S

with ap(0) —1=Cas (C >0) Leading Log Pomeron
Balitsky, Fadin, Kuraev, Lipatov

34/23



Opening the boxes: Impact representation v* v* — * v* as an example

@ Sudakov decomposition: ki = a;p1 + Bip2 + kii (03 =p3 =0, 2p1 - p2 = s)
@ write d*k; = 5 do; dp; d*k1; (k= Eud + kL = Mink)

@ t—channel gluons have non-sense polarizations at large s: ¢%2/***™ = 2 p,

=setong =0and [df = & (ky, 1 — ky)
impact factor

: 2 27,/
M=o [ o -0 [ T ek, e k)

k‘/2
5+iood w -
w [ s ,
< [ ge(2) e
§—1i00

<— multi-Regge kinematics

= set B =0and [da, = cI>”'*_’A’*(7E717 -r+k,)
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Mueller-Navelet jets at LL fails

Mueller Navelet jets at LL BFKL

@ in LL BFKL (~ > (aslns)™),
emission between these jets
— strong decorrelation
between the relative azimuthal
angle jets, incompatible
with pp Tevatron collider data

@ a collinear treatment
at next-to-leading order
(NLO) can describe the data

@ important issue:
non-conservation
of energy-momentum
along the BFKL ladder.
A LL BFKL-based
Monte Carlo combined
with e-m conservation
improves dramatically
the situation (Orr and Stirling)

jety
collinear
parton
(PDF)
rapidity gap
LL BFKL
rapidity gap

Green function

collinear
arton

p
(PDF)
@ jet,

Multi-Regge kinematics
(LL BFKL)
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Studies at LHC: Mueller-Navelet jets

Mueller Navelet jets at NLL BFKL

@ up to now, the
subseries s Y (asIns)™
NLL was included
only in the exchanged
Pomeron state, and
not inside the jet vertices
Sabio Vera, Schwennsen
Marquet, Royon

collinear
parton
(PDF)

jet; NLL jet vertex

rapidity gap

NLL BFKL

rapidity gap .
& Green function

. collinear
@ the common belief parton

was that these corrections (PDF) jety NLL jet vertex
should not be important

Quasi Multi-Regge kinematics (here for NLL
BFKL)
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Master formulas

Angular coefficients

Co = /dquJl d¢ 2 cos (m(qu,l — ¢y — 77))
X /d2k1 d%ko ®(ky1, 271, —k1) G(k1, ko, 8) ®(kj2, z.72, ko).

@ m =0 = cross-section

do
dlks1|dlkyz2| dys1 dyse

=Co

@ m > 0 = azimuthal decorrelation

C’rn

(cos(mg)) = (cos (m(¢s1 — ds2 — 7)) = o
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Master formulas in conformal variables

Rely on LL BFKL eigenfunctions

@ LL BFKL eigenfunctions:
iv—1 in
Enu(ki) = =Lz (k3)"72 e
@ decompose P on this basis
@ use the known LL eigenvalue of the BFKL equation on this basis:

w(n,v) = @uyo (nl, 3 + i)

with xo(n,7) =20(1) =¥ (y+ 2) =¥ (1 -y + 2)
(¥(z) =T/ (x)/T(x), &s = Neas/m)

@ = master formula:

A\ w(m,v)
Cm = (4 — 36m70) /dl’ Cm,l/(|le‘7-77J,l) C'r*n,U(‘kJQ'va,Q) (;)
20

with C,,,,,V(|kJ|,xJ):/d¢,,kodxf(m)V(k,m)E,,,,y(k)cos(m¢,,)

@ at NLL, same master formula: just change w(m,v) and V
(although E., . are not anymore eigenfunctions)
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BFKL Green’s function at NLL

NLL Green's function: rely on LL BFKL eigenfunctions
@ NLL BFKL kernel is not conformal invariant
9 LL F,, . are not anymore eigenfunction

9 this can be overcome by considering the eigenvalue as an operator with a
part containing au

@ it acts on the impact factor

Inl, 2 +i
Xl n,2 v
71‘b0 1 . 8 Cny(|kJ1|,$Jl)

_ T - —21 In 2 AT 1)
2N, X <'”"2+’”){ MR N ol ere) S |

91y K1l '2|kJ2|
HRr

1
w(n,v) = asxo (|n| + w) + a2
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Collinear improvement at NLL

Collinear improved Green's function at NLL

@ one may improve the NLL BFKL kernel for n = 0 by imposing its
compatibility with DGLAP in the collinear limit
Salam; Ciafaloni, Colferai

@ usual (anti)collinear poles in v = 1/2 +4v (resp. 1 — ) are shifted by w/2
9 one practical implementation:
o the new kernel asx(V) (v, w) with shifted poles replaces

&SXO(’Y? 0) + 073)(1 (’Yv 0)

@ w(0,v) is obtained by solving the implicit equation

w(0,v) = aSX(l)('va(Ov v))
for w(n,v) numerically.

@ there is no need for any jet vertex improvement because of the absence of
~ and 1 —« poles (numerical proof using Cauchy theorem "backward")
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Jet vertex: LL versus NLL

k,k’ = Euclidian two dimensional vectors

LL jet vertex:

V x

NLL jet vertex:
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The LL impact factor

Vi (k,z) = b (k)S (k; )

. . (0) _ aS OA/F
with: hy’ (k) = N
xr
SP (k) =6 (1 - ?J) k|6 (k — k)
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NLL corrections to the jet vertex: the quark part (Bartels, Colferai, Vacca)

™ 18 =«

Cp 1— C
+/dz< F—z+—Af) Vi (1, w2)
™ 2 ™ 2

Ccy a2k 14 (1 —2)2 (k—K') (1-2k—-k) 3)
+T/T/dz[ 22 ((172)(1(—1(’)2((1—z)k—k’)Qhé)(k,)SJ O b= i)

3 k2 15\ C 85 2\ ¢ 5 N K2
v oy =|[(Zm= - 2)ZE L (24,7224 27 o | v, o)
q 2 A2 4 T 36 4 p2| 4

1
- 1(72(—)(1\2 - k’2)vq(°>(k, :cz)>

1
— o(k-k| - 2(k-K K ) v, k’,:]
kw2 (I | (I [+ 1 D) Vg ( )

Cp 1422 ;a1 NCp 3)
—= [d= P s 2k 4+ (1 —2)I, (1 —2)(k —1),z(1 — 2); 2
+ T — /w12[12+(17k)2( Pkt - 210 - 01,20 - 2)0)

+ 333)(1( — (=LA =)L e - 2);52))
2
—e ((1 f oha 12> (vq(o) (, 2) + V{0 zz))]

2Cp 1 421 NCp @ A2 2 (0 ]
- = z - | —= 5 k,z) — © —1°| v k,
7r d (172)/7r12 [12+(l—k)2 g e (1 - 2)2 a oo
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NLL corrections to the jet vertex: the gluon part (Bartels, Colferai, Vacca)

™ 36 w

1 C 1N K2 2 67\ C 13 N
—z4a -7 In — + oz —A+——ffbln— V(O)(kz)
A 0 }.L

N
+ /dz —fz—Fz(l - z)Vg(O) (k, xz)
™ A

N a2k’ 1 h(O () 1

! q Gk k — K mzw) — 2 _ 12y (0) (g,

+ / - /0 dz qu(z}[(k—k’)2+k’2 SJ (k' k — k' ,zz;x) k129(A k )Vq (k,ﬂz):|
Ny NC 4 (k — k') - K

(1 — 2k —1/)2 [2(1 BCEIEE

sPad k—k aza)

2m

- k%(—) (a2 (@ - ok - k)2 5P e, I)]

S+ -0 - H&-D. 21— 2)50)

Cu g1 dz a?1 NCy
+ =, 172[(172)13(172)]/_{712+(17k)2[

+8P a0, - L0 - o))

A2 2\ [ ©
_(—)((1_2)2 —1 ) [Vg (&, z) + v (k,:z)]}

204 2 NCy @) A2 5 ) ]
- —— 4 s Jz) —© - @
/ 1- = / 12 [12+(l—k)2 g Gem (1 - 2)2 ) Ve e

Cca rd?k 1 (k- k') - ((1 — 2)k — k) )
e e A e

x @ ad k-1 wzia) - 1(fze(A 1?0 i, zz))

1

~ Sa T Ok — K1 - =k D) VD o, z>]
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Jet vertex: jet algorithms

Jet algorithms

@ a jet algorithm should be IR safe, both for soft and collinear singularities
@ the most common jet algorithm are:

@ k¢ algorithms (IR safe but time consuming for multiple jets configurations)

o cone algorithm (not IR safe in general; can be made IR safe at NLO: Ellis,
Kunszt, Soper)
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Jet vertex: jet algorithms

Cone jet algorithm at NLO (Ellis, Kunszt, Soper)

@ Should partons (|p1], ¢1,y1) and (p2|, ¢2,y2) be combined in a single jet?
|p:| =transverse energy deposit in the calorimeter cell ¢ of parameter
Q= (yi,¢:) in y — ¢ plane
@ define transverse energy of the jet: p; = |p1| + |p2|
@ jet axis:
L= IP1ly1 + [p2|y2

pJ
Qe
_ Ipilé1 + [p2| 42

Py

¥

parton; (Q1, |p1l)

cone axis (Q¢) Q= (yi, ¢:) in y — ¢ plane
partong (QQ, |p2|)

If distances [ — Qc|® = (i — ye)® + (i — ¢c)? < R* (i =1 and i = 2)

— partons 1 and 2 are in the same cone 2,
Ip1] + |p2|

combined condition: [ — Q| < ——————
maz(|p1], [p2|)
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Jet vertex: LL versus NLL and jet algorithms

LL jet vertex and cone algorithm

k, k’ = Euclidian two dimensional vectors

b

SP(kyix) =6 (1 - ’;—J) k|6 (k — k)
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Jet vertex: LL versus NLL and jet algorithms

NLL jet vertex and cone algorithm
k, k’ = Euclidian two dimensional vectors

553’Ccme)(k'7 k -k, zz;2) =

(2) k—K'|+[K 2
S (kw)@([mmm] - [Ay2+A¢2]>

’ ’ 2
+ 8P (k—K,22) 0 <[Ay2 + 267] — | iy Reone| )

2 ’ kK |+]K/| 2
+ 8P, a(1-2)) @ ([Ay2 + 807 - [ Reone] ) ,
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Mueller-Navelet jets at NLL and finiteness

Using a IR safe jet algorithm, Mueller-Navelet jets at NLL are finite

@ UV sector:
o the NLL impact factor contains UV divergencies 1/¢

o they are absorbed by the renormalization of the coupling: ag — as(ur)

9 IR sector:
o PDF have IR collinear singularities: pole 1/e at LO

o these collinear singularities can be compensated by collinear singularities of
the two jets vertices and the real part of the BFKL kernel

@ the remaining collinear singularities compensate exactly among themselves

o soft singularities of the real and virtual BFKL kernel, and of the jets vertices
compensates among themselves

This was shown for both quark and gluon initiated vertices (Bartels, Colferai,
Vacca)
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LL substraction and sg
@ onesums up > (asIn§/so)" + as Y (s In§/s0)" (8§ =z1228)

9 at LL s¢ is arbitrary

@ natural choice: so = /50,1 50,2 So0,; for each of the scattering objects
o possible choice: sg; = (Jky| + |ks — k|)? (Bartels, Colferai, Vacca)

9 but depend on k, which is integrated over

@ §is not an external scale (x1,2 are integrated over)
2

o we prefer
x
50,0 = (kg1 + k1 —ka[)? = s, = lek?n
J1 K 3 TJ1Tg, S
T Lt A
2 50 so kgl kgl
2 / T2 1.2
50,2 = (|kJ2| + |kJ2 — k2|) — 80’2 = TkJQ
7,2 — UJ17YS2 = Y
9 sp — sy affects
o the BFKL NLL Green function
@ the impact factors:
’ 21/ / ’ 1. 80,
OniL(ki;sp ;) = PnoL(ki;so) + [ dk q)LL(ki)}CLL(kiyki)El -~ (1)
0,
@ numerical stability (non azimuthal averaging of LL substraction) improved
with the choice so,; = (ki — 2k;)?
(then replaced by Sg,i after numerical integration)
51/23
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Motivation for asymmetric configurations

@ Initial state radiation (unseen) produces divergencies if one touches the
collinear singularity q*> — 0

%7
ERRERS
q /
PJ2

@ they are compensated by virtual corrections

@ this compensation is in practice difficult to implement when for some
reason this additional emission is in a "corner” of the phase space (dip in
the differential cross-section)

@ this is the case when p1 +p2 — 0
@ this calls for a resummation of large remaing logs = Sudakov resummation
PJ1

R
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Motivation for asymmetric configurations

@ since these resummation have never been investigated in this context, one
should better avoid that region

@ note that for BFKL, due to additional emission between the two jets, one
may expect a less severe problem (at least a smearing in the dip region

[p1] ~ [p2])
PJ1

PJ2
@ this may however not mean that the region |p1| ~ |p2| is perfectly

trustable even in a BFKL type of treatment

@ we now investigate a region where NLL DGLAP is under control
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