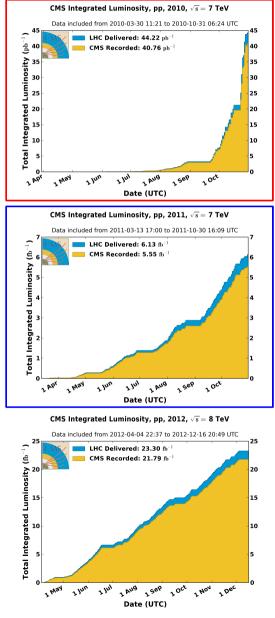
Measurements of beauty quark production at CMS

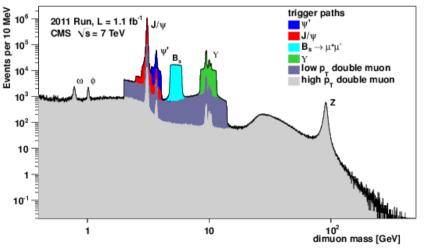
M. Galanti on behalf of the CMS collaboration

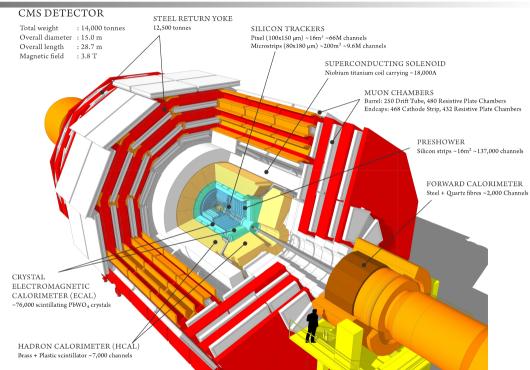
Università and INFN, Padova - CERN


- Introduction: LHC run and CMS performance
- Measurement of $b\overline{b}$ angular correlations
- Λ_b^0 cross section and lifetime
- B_s^0 lifetime difference $\Delta \Gamma_s$
- Observation of B_c meson decays

LHC proton-proton runs

- In the past 3 years LHC has collided two proton beams at c.m. energies up to 7 TeV (2010-2011) and 8 TeV (2012)
- Total luminosity delivered to CMS raised from ~40 pb⁻¹ in 2010 to ~5 fb⁻¹ in 2011 and ~20 fb⁻¹ in 2012
 - For this talk, I will concentrate on 2010 and 2011 data, as most 2012 b-physics analyses are still being finalized



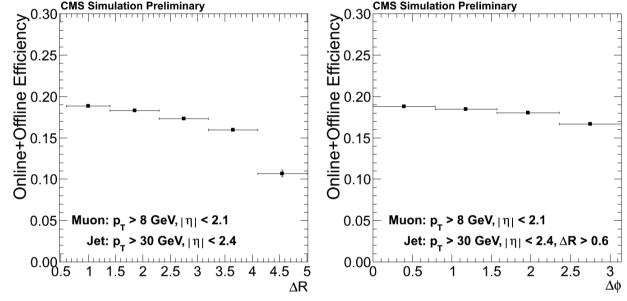


Heavy-Flavor physics in CMS

- CMS Heavy-Flavor program taking great advantage from the excellent performance of the CMS detector
 - >93% data taking efficiency
 - Excellent vertex and pt resolution

 (~15µm and ~1% for high-pt central tracks)
- "Tight" muon selection possible with high efficiency for real µ and very low hadron→µ misidentification rate (~0.1% for π, K, and p)

- Flexible High Level Trigger which allows to have many specialized di-μ triggers with high efficiency and high purity
 - Dedicated triggers centered on the J/ ψ , ψ (2S), B°, Y(nS) mass peaks
 - Generic low-p_t and high-p_t di-μ


Measurement of $b\overline{b}$ angular correlations

- Angular correlations of pairs of b quarks allow to test pQCD
 - At LO, only back-to-back processes are possible
 - At higher orders, additional particles in the final state allow for different topologies
- A new measurement complements a published CMS study
 JHEP03 136 (2011)
 - Different experimental technique: select events with pairs of jets tagged as b
 → previous analysis used secondary vertices
 - Improved results: measure **absolute cross section as a function of** ΔA (i.e. $\Delta \phi$ and ΔR) \rightarrow previous analysis did it with a quite large experimental uncertainty (~47%)
- Using 3 pb^{-1} of 7 TeV pp data collected in 2010 by a **low-p**_t single- μ trigger
- Selected events with at least 2 jets with $p_t(jet) > 30$ GeV and $|\eta(jet)| < 2.4$
 - ≥ 1 containing a "tight" μ , with $p_t(\mu) > 8$ GeV, $|\eta(\mu)| < 2.1$ and ≥ 1 not containing a muon
 - Jets **b-tagged** with the Track Counting algorithm, using a medium (tight) working point for the μ (non- μ) jet
 - **ΔR(jet-jet)>0.6** to avoid overlap

Measurement of bb angular correlations

- Total selection efficiency ε^{total} found from MC corrected with scale factors derived from data
- **Purity P**_{bb} of signal sample in data found by applying the selection in 4 separate steps and solving the resulting system of 4 equations in 4 unknowns
 - $P_{bb} = 0.933 \pm 0.017(stat)$
 - Bin-by-bin purity corrections applied to data

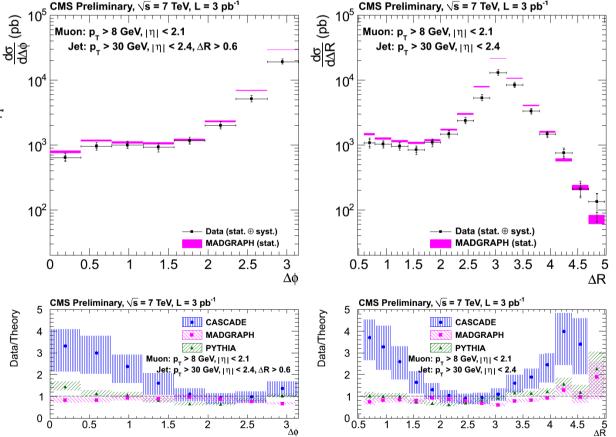
- **Overall precision** dominated by systematic uncertainties
 - Mainly given by data/MC scale factors, jet energy scale, selection purity, trigger efficiency
 - Total uncertainty depending on the bin, **typically ~10-20**%

Measurement of bb angular correlations

Cross section as a function of ΔA ($\Delta A = \Delta \phi$, ΔR) found with: and compared with theoretical predictions

$$\left(\frac{d\sigma}{d\Delta A}\right)_{i} = \frac{N^{Data} P_{bb}}{\mathcal{L} \Delta A_{bin} \epsilon_{b\overline{b}}^{Total}}$$

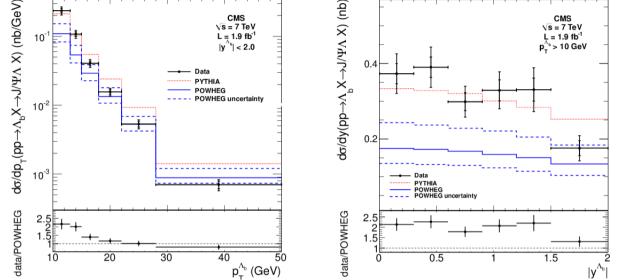
- **PYTHIA** describes best the absolute normalization, disagrees at low $\Delta \phi$
- **CASCADE** disagrees in both $\Delta \phi$ and ΔR , underestimates σ
- **MADGRAPH** has best description of shape, overestimates σ


```
Total cross sections:
DATA:
σ=12.2±0.2(stat.)<sup>+1.6</sup>-12 (syst.) nb
```

```
CASCADE:
```

MADGRAPH:

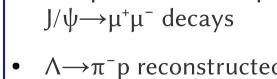
```
σ=17.1±0.1(stat.) nb
Рутніа:
```

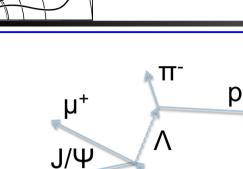

σ=13.18±0.02(stat.) nb

M. Galanti – Università and INFN Padova, CERN

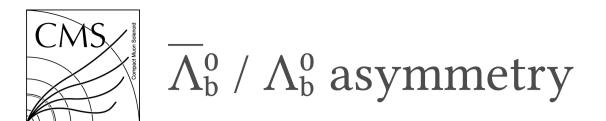
Data/Theory

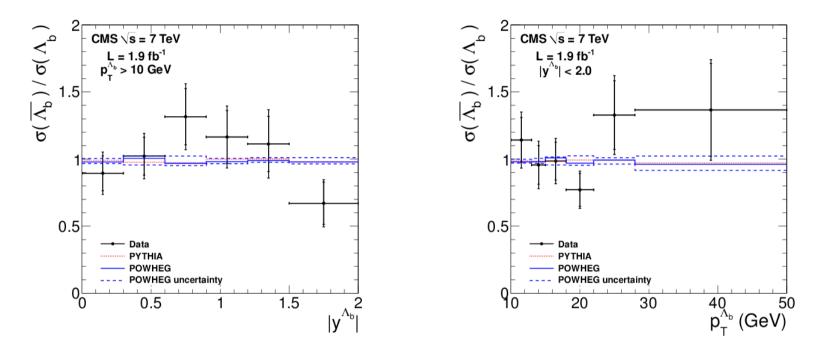
CMS s = 7 TeV $= 1.9 \text{ fb}^{-1}$


- $\sigma \times BF$ binned as a function of p_t and |y| of the Λ_b^0
 - $BF(\Lambda_b^0 \rightarrow J/\psi \Lambda) = 5.7 \pm 3.1 \times 10^{-4} \rightarrow 54\%$ theory uncertainty
 - $d\sigma/dp_t$ falls faster in data than theory, $d\sigma/dy$ shows no • significant deviations in the shape
- **Total cross section** ($p_t(\Lambda_b^0) > 10 \text{ GeV}, |y(\Lambda_b^0)| < 2.0$):

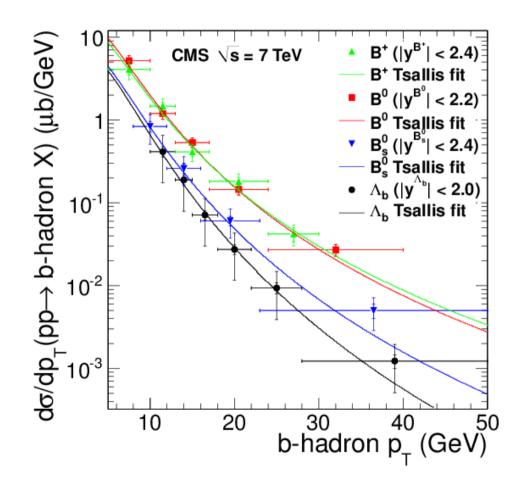

 $\sigma(\Lambda_b^0) \times BF(\Lambda_b^0 \rightarrow J/\psi \Lambda) = 1.16 \pm 0.06(\text{stat}) \pm 0.12(\text{syst}) \text{ nb}$

POWHEG: $\sigma \times BF = 0.63 - 0.37 + 0.41 \text{ nb}$ **PYTHIA:** $\sigma \times BF = 1.19 \pm 0.64 \text{ nb}$


Measurement done on • 1.9 fb^{-1} of pp collisions at 7 TeV collected in 2011


- The decay $\Lambda_{\rm b}^0 \rightarrow J/\psi \Lambda$ is • reconstructed in the channels J/ $\psi \rightarrow \mu^+ \mu^-$, $\Lambda \rightarrow \pi^- p$
- Events triggered by μ pairs • compatible with displaced $J/\psi \rightarrow \mu^{+}\mu^{-}$ decays
- $\Lambda \rightarrow \pi^{-}p$ reconstructed from displaced 2-track vertices

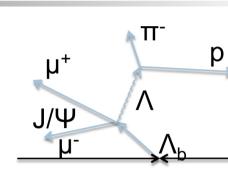
$\Lambda_b^0 \rightarrow J/\psi \Lambda$ cross section


• Ratio $\sigma(\overline{\Lambda}_{b}^{0})/\sigma(\Lambda_{b}^{0})$ found as a function of p_{t} and |y| with:

 $\sigma(\overline{\Lambda}_{b}^{0}) / \sigma(\Lambda_{b}^{0}) = \left[n_{sig}(\overline{\Lambda}_{b}^{0}) / n_{sig}(\Lambda_{b}^{0})\right] \times \left[\epsilon(\Lambda_{b}^{0}) / \epsilon(\overline{\Lambda}_{b}^{0})\right]$

- POWHEG and PYTHIA both predict ratio to be flat and ≈ 1
- Measurement consistent with predictions within experimental uncertainties: $\sigma(\overline{\Lambda}_{b}^{0}) / \sigma(\Lambda_{b}^{0}) [p_{t}(\Lambda_{b}^{0}) > 10 \text{GeV}, |y(\Lambda_{b}^{0})| < 2.0)] = 1.02 \pm 0.07(\text{stat}) \pm 0.09(\text{syst})$

- Summary of CMS measurements of B-hadron cross sections vs. pt
 - **B**⁺→**J**/ψK⁺ PRL 106, 112001 (2011)
 - **B**⁰→**J**/ψK_s prl 106, 252001 (2011)
 - B_s→J/ψφ
 prd 84, 052008 (2011)
 - Λ⁰_b→J/ψΛ
 PLB 714 (2012) 136-157
- Slope of cross section vs. p_t steeper for heavier hadrons (Λ_b and B_s) than for B° and B^+
 - Similar effect also observed by LHCb



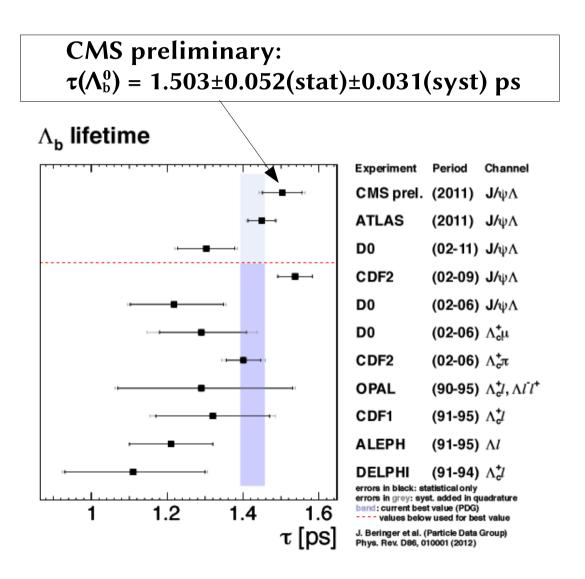
Measurement of Λ^0_b lifetime

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH11013

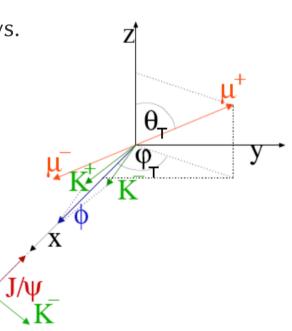
- Measurement of $\tau(\Lambda_b^0)$ is complementary to cross section measurement, probe of non-perturbative QCD predictions
 - Looked at the same decay, $\Lambda_b^0 \rightarrow J/\psi \Lambda$, with $J/\psi \rightarrow \mu^+\mu^-$ and $\Lambda \rightarrow p\pi$
 - Similar selection criteria
- As cross-check, measured also $\tau(B^0)$ with a procedure similar to the signal:
 - Use decay $B^0 \rightarrow J/\psi K_s^0$, with $J/\psi \rightarrow \mu^+\mu^-$ and $K_s^0 \rightarrow \pi^+\pi^-$
- Main backgrounds from prompt and non-prompt J/ψ associated with real or misidentified Λ candidates
- Efficiency found from simulation, treated as flat vs. lifetime
- Main systematic uncertainty related to efficiency determination. Other systematics from alignment, event selection and fit model

M. Galanti - Università and INFN Padova, CERN

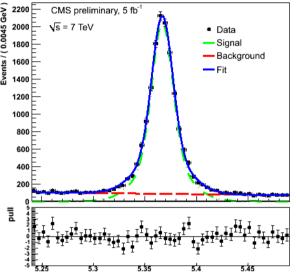
Measurement of Λ^0_b lifetime

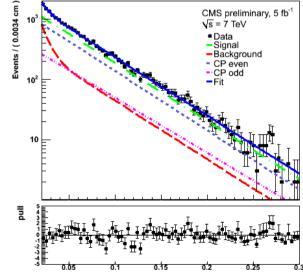

- $\tau(\Lambda_b^0)$ determined from an unbinned maximum-likelihood fit on:
 - Λ⁰_b invariant mass m
 - Λ^0_b proper decay time and uncertainty t and σ_t
- Result: $\tau(\Lambda_b^0) = 1.503 \pm 0.052(\text{stat}) \pm 0.031(\text{syst}) \text{ ps}$

Summary of $\tau(\Lambda_b^0)$ measurements

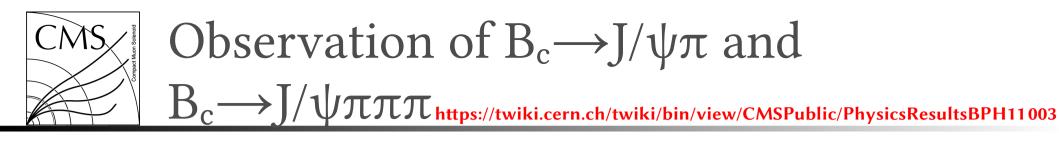

- CMS preliminary result on Λ⁰_b lifetime is compared with world average from PDG (shaded blue band)
- Measurements contributing to PDG average shown below red dashed line
- Also shown two other recent measurements from ATLAS arXiv:1207.2284 and D0 arXiv:1204.2340
- CMS result consistent with PDG average and confirming tendency of more recent measurements towards a larger Λ⁰_b lifetime

Measurement of B⁰_s lifetime difference


- The lifetime difference of the two B_s^0 mass eigenstates $\Delta \Gamma_s$ is studied using the decay channel $B_s^0 \rightarrow J/\psi \phi$, followed by $J/\psi \rightarrow \mu\mu$ and $\phi \rightarrow KK$
 - Small mixing phase in the SM \rightarrow **assuming** ϕ_s =**0**
- Analysis done on 5 fb⁻¹ of 7 TeV pp data collected in 2011
- Look at the differential decay rate in the transversity basis vs. EUR.PHYS.J. C 6 647 (1999)
 - The mass M
 - The proper decay time t
 - The **angular distributions** $\Theta = \{\Theta_P, \psi_P, \varphi_T\}$ of the final decay products (to disentangle the two CP states)
- Use a 5D unbinned maximum likelihood fit to extract:
 - B_s mean lifetime and lifetime difference: $\tau, \Delta\Gamma_s$
 - Transversity amplitudes: $|A\perp|^2$, $|A0|^2$
 - Strong phase: δ||

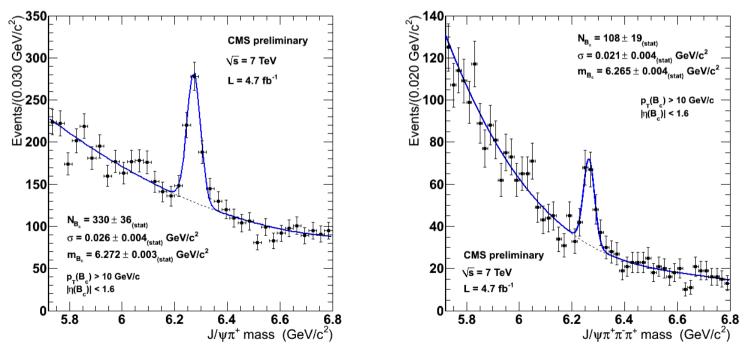


Measurement of B^o_s lifetime difference


- Events triggered by two μ with $p_t(\mu)>4$ GeV
- ~14.5K B_s candidates reconstructed from 2 μ + 2 tracks forming non-prompt J/ ψ and φ candidates
 - Main backgrounds from non-prompt J/ ψ from the decay of other B hadrons (B⁰, B⁺, Λ_b)
- Efficiency corrections coming from a simulated $B_s \rightarrow J/\psi \phi$ sample, found independently for each variable (negligible correlations)
- Main systematics from signal and background models, resolution, and efficiency
- Results $\Delta\Gamma_s = 0.048 \pm 0.024(stat) \pm 0.003(syst) \text{ ps}^{-1}$ $\tau = 0.04580 \pm 0.00059(stat) \pm 0.00022(syst) \text{ cm}$ $|A0|^2 = 0.528 \pm 0.010(stat) \pm 0.015(syst)$ $|A\perp|^2 = 0.251 \pm 0.013(stat) \pm 0.014(syst)$ $\delta \parallel = 2.79 \pm 0.14(stat) \pm 0.19(syst) \text{ rad}$

Invariant mass J/ψ K⁺K[−] [GeV]

B_s proper decay length [cm]



- Since B_c carries two different heavy flavors, it is a unique probe of heavy-quark dynamics
- Very few experimental measurements so far (produced only at hadron colliders)
- Preliminary CMS results based on 4.7 fb⁻¹ of pp collisions collected in 2011
- Selection:
 - **Displaced J/\psi di-muon trigger** with $p_t(J/\psi) > 7$ GeV
 - **Kinematic vertex fit** using the di- μ candidate with mass constrained to the J/ ψ world average + 1(3) tracks
 - Selected only B_c candidates with $p_t(B_c) > 10$ GeV and $|\eta(B_c)| < 1.6$

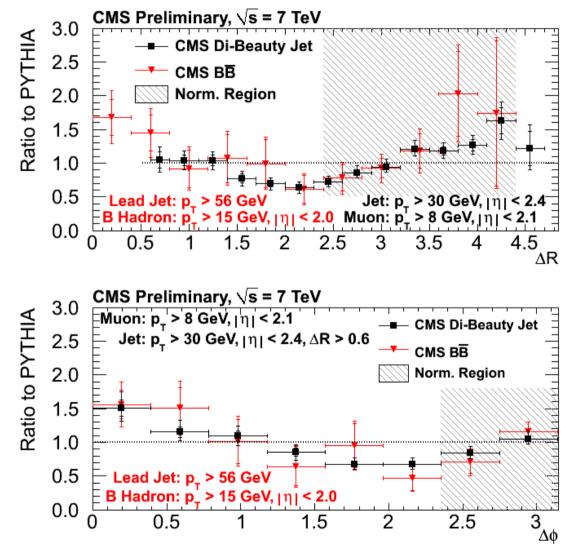
Observation of $B_c \rightarrow J/\psi \pi$ and $B_c \rightarrow J/\psi \pi \pi \pi$

- CMS able to cleanly observe B_c in both decay channels
- $B_c \rightarrow J/\psi \pi^+$ (10.5 σ significance)
- $B_c \rightarrow J/\psi \pi^+ \pi^- \pi^+$ (6.1 σ significance)
 - First seen by LHCb, only experimental confirmation so far
- Next steps: measure cross sections, BF ratios, etc.

M. Galanti – Università and INFN Padova, CERN

Conclusions

- In the last 3 years CMS has collected very high quality pp data at 7 and 8 TeV
- A rich Heavy-Flavor physics program is being carried on and has already delivered many results
- Among the latest:
 - A new measurement of $b\overline{b}$ angular correlations complementing previous CMS results
 - Several results in the Λ_b^0 sector:
 - Differential $\Lambda_b^0 \rightarrow J/\psi \Lambda$ cross section
 - Particle/antiparticle asymmetry
 - Mean lifetime
 - Measurement of the B_s lifetime difference $\Delta\Gamma_s$
 - Observation of $B_c \rightarrow J/\psi \pi$ and $B_c \rightarrow J/\psi \pi \pi \pi$ decays
- As new data gets analyzed, more results are in the pipeline and will be published in the next months
- Last remark: follow also the talks by J. Seixas, E. A. Yetkin, X. Shi (today), and A. York (tomorrow) for a more comprehensive review of the CMS HF physics activities!


Backup

Comparison between new and old $b\overline{b}$ correlation measurements

- Comparison between the two measurements done by CMS on bb angular correlation
- Caveats:

CMS

- different phase space
- different experimental techniques: jets with μ vs. secondary vertices
- Ratio to PYTHIA shown here for both, normalized in the back-to-back region
- Overall good agreement within experimental uncertainties

B^o_s lifetime – signal model

$$\begin{aligned} \frac{d^4\Gamma(B_s(t))}{d\Theta dt} &= f(\Theta, t; \alpha) = \sum_{i=1}^6 O_i(\alpha, t) g_i(\Theta) & \text{Differential decay rate as a function of } \\ \Theta \text{ and } t \end{aligned}$$

$$\begin{aligned} O_1 &= |A_0(t)|^2 = |A_0(0)|^2 e^{-\Gamma_s t} [\cosh(\Delta\Gamma_s t/2) - \cos\phi_s \sinh(\Delta\Gamma_s t/2)] \\ O_2 &= |A_{||}(t)|^2 = |A_{||}(0)|^2 e^{-\Gamma_s t} [\cosh(\Delta\Gamma_s t/2) - \cos\phi_s \sinh(\Delta\Gamma_s t/2)] \\ O_3 &= |A_{\perp}(t)|^2 = |A_{\perp}(0)|^2 e^{-\Gamma_s t} [\cosh(\Delta\Gamma_s t/2) + \cos\phi_s \sinh(\Delta\Gamma_s t/2)] \\ O_4 &= Im(A_{||}^*(t)A_{\perp}(t)) = |A_{||}(0)||A_{\perp}(0)|e^{-\Gamma_s t} [-\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_s \sinh(\Delta\Gamma_s t/2)] \\ O_5 &= Re(A_0^*(t)A_{||}(t)) = |A_0(0)||A_{||}(0)|\cos\delta_{\parallel} e^{-\Gamma_s t} [\cosh(\Delta\Gamma_s t/2) - \cos\phi_s \sinh(\Delta\Gamma_s t/2)] \\ O_6 &= Im(A_0^*(t)A_{\perp}(t)) = |A_0(0)||A_{\perp}(0)|e^{-\Gamma_s t} [-\cos\delta_{\perp}\sin\phi_s \sinh(\Delta\Gamma_s t/2)], \end{aligned}$$

$$g_{1} = 2\cos^{2}(\psi_{T})(1 - \sin^{2}(\theta_{T})\cos^{2}(\varphi_{T})),$$

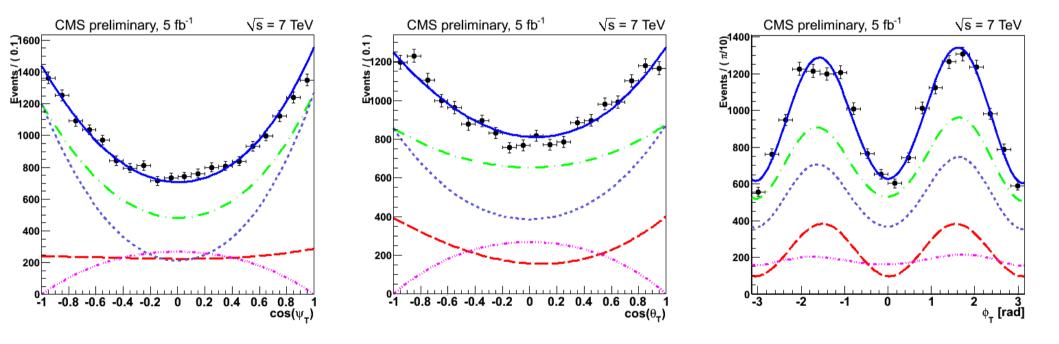
$$g_{2} = \sin^{2}(\psi_{T})(1 - \sin^{2}(\theta_{T})\sin^{2}(\varphi_{T})),$$

$$g_{3} = \sin^{2}(\psi_{T})\sin^{2}(\theta_{T}),$$

$$g_{4} = -\sin^{2}(\psi_{T})\sin^{2}(2\theta_{T})\sin(\varphi_{T}),$$

$$g_{5} = \frac{1}{\sqrt{2}}\sin(2\psi_{T})\sin^{2}(\theta_{T})\sin(2\varphi_{T}),$$

$$g_{6} = \frac{1}{\sqrt{2}}\sin(2\psi_{T})\sin(2\theta_{T})\sin(\varphi_{T}).$$



 $\mathcal{L} = L_{\text{signal}} + L_{\text{background}},$ $L_{\text{signal}} = (f(\Theta, t; \alpha) \otimes G(t, \kappa, \sigma(t))]) \cdot M(m) \cdot \epsilon(t) \epsilon(\Theta),$ $L_{\text{background}} = b(\Theta, t, m),$

- $G(t,\kappa,\sigma(t)) = Gaussian resolution function$
 - $\sigma(t)$ = event proper decay time uncertainty
 - κ = uncertainty scaling factor
- M(m) = signal mass PDF (sum of two gaussians)
- $\epsilon(t)$ = proper decay time efficiency function
- $\epsilon(\Theta)$ = angular efficiency function
- $b(\Theta, t, m) = background model$

B_s lifetime – fits to angular distributions

