Searches for new heavy resonances and large extra dimensions at CMS

S. A. Schmitz

III. Physikalisches Institut A, RWTH Aachen

on behalf of the CMS Collaboration

DIS 2013 2013, Marseille

- Introduction
- Search for Narrow Resonances in Dilepton Mass Spectra (EXO-12-061, full 2012 dataset)
- Search for Large Extra Dimensions in Dilepton Events (EXO-12-027, EXO-12-031, full 2012 dataset)
- Search for new physics in monojet events (EXO-12-048, full 2012 dataset)
- Search for Microscopic Black Hole Signatures (EXO-12-009, intermediate 2012 dataset)

(W' results omitted as shown in a dedicated presentation)

Find these and many more CMS EXO results at:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

2012 CMS Proton-Proton Data

proton-proton collisions in 2012: 20 fb⁻¹ of data recorded for analyses at $\sqrt{s}=8$ TeV

Dielectron Event Selection

- double electron trigger

 $E_T^{cluster} > 33 \, GeV$

- final selection: $p_T^e > 35 \,\text{GeV}$
- $|\eta| < 1.44$ (barrel) $\lor 1.56 < |\eta| < 2.5$ (endcap) (at least one barrel electron required)
- isolation requirements in tracker and calorimeter
- track matched to ECAL cluster
- $-|d_{xy}| < 0.2(0.5)$ cm in barrel (endcap)
- no opposite sign requirement

Dimuon Event Selection

- single muon trigger $p_T^{\mu} > 40 \, GeV$
- final selection: $p_T^{\mu} > 45 \,\text{GeV}, \ |\eta| < 2.1 , 1^{\text{st}} \text{ muon}$ $p_T^{\mu} > 45 \,\text{GeV}, \ |\eta| < 2.4 , 2^{\text{nd}} \text{ muon}$
- muons required to be measured both in tracker and muon system
- tracker isolation
- 5% more data because ECAL isn't used for the event selection
- $|d_{xy}| < 0.2 \,\mathrm{cm}$, $|a_{\mu\mu}| < n 0.02$
- opposite sign requirement

Dielectron Mass Spectrum

Dimuon Mass Spectrum

RWITHAACHEN

RWITHAACHEN

CMS,

Non-Resonant Dilepton Search

RWITHAACHEN

Non-Resonant Dilepton Search

$\mu^+ \mu^ \mu\mu, \mathcal{L} = 20.6 \text{ fb}^{-1}$				$ee, \mathcal{L} = 19.6 \text{ fb}^{-1}$				
Mass	N _{obs}	Background	Signal exp.	Mass	Nobs	Background	Signal exp.	
region [TeV]		expectation	$\Lambda_T = 3.6 \text{TeV}$	region [TeV]	003	expectation	$\Lambda_{\rm T} = 3.6 {\rm TeV}$	
Control regions				Control regions				
0.12-0.20	$8.20 \cdot 10^4$	$(7.96\pm0.64)\cdot10^4$		0.12.0.40	05051	<u> 22407 ⊥12274</u>		
0.20-0.40	$1.92 \cdot 10^{4}$	$(1.87\pm0.15)\cdot10^4$		0.12-0.40	00001	02497 ±12374		
0 40-0 60	$1.42 \cdot 10^{3}$	$(1.45+0.14) \cdot 10^3$		0.40-0.60	1251	1131 ± 169		
0.60-0.90	287	282+32		0.60-0.90	249	232 ± 35		
0.00 0.00	49	44 5+6 6		0.90-1.30	41	36 ±6		
1.30-1.80	11	5 74+1 16	3.38	1.30-1.80	4	4.75 ± 0.70	3.70	
1:00 1:00 1:1 0:14±1:10 0:00			Signal region					
Signal region								
> 1.80	1	0.73±0.21	6.04	> 1.80	0	$0.64{\pm}0.10$	6.90	

leading systematic uncertainties in the signal region:

- $\mu^+\mu^-$ muon momentum scale
 - PDF uncertainties
 - muon mom. resolution
 - DY higher order corr.

- ee PDF uncertainties
 - Electron Reco and ID
 - DY higher order corr.

Non-Resonant Dilepton Search

Limits on the ADD (Arkani-Hamed, Dimopoulos, Dvali) model

RWITHAACHEN

CMS

Monojet Search

Trigger:

- $E_{\rm T}^{\rm miss}$ > 120 GeV or
- $E_{\rm T}^{\rm miss} > 105 \,{\rm GeV}$, $p_{\rm T, jet} > 80 \,{\rm GeV}$

Event Selection:

- jet composition
- veto on isolated muons/electrons
- less than 3 jets with $p_{T, jet} > 30 \,\text{GeV}$
- $p_{\rm T, jet 1} > 110 \,{\rm GeV}$
- $\Delta \phi_{\text{jet 1, jet 2}} < 2.5$

Dominant Bkg:

$$Z \rightarrow \nu \nu + \text{Jets}$$
, $W \rightarrow l \nu + \text{Jets}$

data compared to simulation

RWITHAACHEN

Monojet Search

Data-driven background estimation:

 $Z \rightarrow \nu \nu + Jets$ estimated from a dimuon sample

 $W \rightarrow l \nu + \text{Jets}$

estimated from a single muon sample

 $N(Z(\nu\nu)) = \frac{N^{\text{obs}} - N^{\text{bgd}}}{A \times \epsilon} \cdot R\left(\frac{Z(\nu\nu)}{Z(\mu\mu)}\right)$

data comapred to data-driven bkg estimate

$E_{\mathrm{T}}^{\mathrm{miss}} (\mathrm{GeV}) \rightarrow$	> 250	> 300	> 350	> 400	> 450	> 500	> 550
$Z(\nu\nu)$ +jets	30600 ± 1493	12119 ± 640	5286 ± 323	2569 ± 188	1394 ± 127	671 ± 81	370 ± 58
W+jets	17625 ± 681	6042 ± 236	2457 ± 102	1044 ± 51	516 ± 31	269 ± 20	128 ± 13
Total SM	49154 ± 1663	18506 ± 690	7875 ± 341	3663 ± 196	1931 ± 131	949 ± 83	501 ± 59
Data	50419	19108	8056	3677	1772	894	508

Good agreement between SM estimate and data

Both statistical and systematic uncertainties are taken into account overall bkg uncertainty for $E_{\rm T}^{\rm miss}$ > 500 GeV about 8%

RNTHAACHEN

Monojet Search

Limits on DM Models

contact interaction)

(shown here: axial vector

Limits on Large Extra Dimensions in the ADD model

best limits

Microscopic Black Holes

trigger:

 based on sum of transverse energies measured in the calorimeter (200-700 GeV, depending on the period of data taking)

selection of physics objects based on Particle Flow:

- jets: $p_T^{jet} > 50 \text{ GeV}, |\eta| < 2.6$
- muons: $p_T^{\mu} > 50 \text{ GeV}, |\eta| < 2.1$
- electrons, photons : $p_T^{e, \gamma} > 50 \text{ GeV}$ $|\eta| < 1.44 \text{ (barrel)} \lor 1.56 < |\eta| < 2.5 \text{ (endcap)}$
- missing transverse energy:

 $E_{\rm T}^{\rm miss}$ > 50 GeV

RWITHAACHEN

Microscopic Black Holes

limits on (semi-classical) micro black hole

Shape estimate for N=2 is applied to higher object multiplicities (inclusive)

- Presented results from several CMS analyses focusing on searches for heavy dilepton resonances and extra dimensions
- All analyses based on either the full 2012 dataset or a significant part of it
- The measurements are compatible with the standard model expectation and allow to improve the limits on BSM scenarios
- Of course we hope that people outside the CMS collaboration will pick up our results to evaluate implications for additional models

Backup Figures

RWTHAACHEN

RWTHAACHEN

Dilepton Resonances

eµ-spectrum

muon efficiency

RWTHAACHEN

Dilepton Resonances

highest mass dielectron event

$$M_{ee} = 1776 \text{ GeV}$$

RS limits with partial 2012 dataset (EXO-12-015)

RWITHAACHEN

mass spectra

RWITHAACHEN

limit table

RWTHAACHEN

ADD k-factor	Λ_T [TeV] (GRW)	<i>M_s</i> [TeV] (HLZ)						
		<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	<i>n</i> = 6	<i>n</i> = 7	
$\mu\mu, \sigma_{ m s,}\mu\mu$ < 0.25 fb (0.25 fb expected) at 95% CL								
1.0 (observed)	3.64	3.48	4.33	3.64	3.29	3.06	2.89	
1.0 (expected)	3.65	3.50	4.34	3.65	3.30	3.07	2.90	
1.3 (observed)	3.77	3.69	4.49	3.77	3.41	3.17	3.00	
1.3 (expected)	3.78	3.70	4.50	3.78	3.42	3.18	3.01	
ee, $\sigma_{\rm s,ee}$ < 0.19 fb (0.19 fb expected) at 95% CL								
1.0 (observed)	3.90	3.72	4.64	3.90	3.52	3.28	3.10	
1.0 (expected)	3.89	3.70	4.62	3.89	3.51	3.27	3.09	
1.3 (observed)	4.01	3.99	4.77	4.01	3.63	3.37	3.19	
1.3 (expected)	4.00	3.95	4.76	4.00	3.61	3.36	3.18	
$\mu\mu$ and ee, per channel $\sigma_{ m s}$ < 0.12 fb (0.12 fb expected) at 95% CL								
1.0 (observed)	4.01	4.14	4.77	4.01	3.63	3.37	3.19	
1.0 (expected)	4.00	4.13	4.76	4.00	3.62	3.37	3.18	
1.3 (observed)	4.15	4.35	4.94	4.15	3.75	3.49	3.30	
1.3 (expected)	4.14	4.37	4.93	4.14	3.74	3.48	3.30	

Microscopic Black Holes

QBH limits

RWITHAACHEN

model independent limits on the signal cross section

example: $N \ge 4$

 $S_{\rm T}$ spectrum: $N \ge 8$

RWITHAACHEN

Microscopic Black Holes

10-jet event

RWTHAACHEN

The ADD (Arkani-Hamed, Dimopoulos, Dvali) model leads to an effective field theory based on the ideas of

Compactified Large Extra Dimensions

- The Standard Model (SM) is confined to a brane
- Graviton can propagate in the bulk
- Effective field theory at "low" energies

Microscopic Black Holes

© Sabine Hossenfelder

- Reduced Planck scale due to large extra dimension → increased Schwarzschild radius
- Large cross-sections possible O(100 pb)
- Ansatz: $\sigma \sim \pi r_s^2$
- Signature: events with high particle multiplicities and high transversal momentum

simulation of signal events with: a) BlackMax b) Charybdis2

NTHAACHEN

Randall Sundrum (RS-1) Scenario

Slice of AdS₅ space between two 3+1 branes

$$ds^{2} = e^{-2kr_{c}\phi} \eta_{\mu\nu} dx^{mu} dx^{mu} + r_{c}^{2} d\phi^{2}$$

resonant diphoton signal from the first KK mode of the Graviton

Model parameters:

graviton mass

coupling parameter
$$\, {ilde k} \, = \, k \, / \, {f M}_{_{
m Pl}} \,$$

 \mathbf{M}_{1}

RWITHAACHEN