Valence transversities: the collinear extraction

DIS 2013
Marseille

Aurore Courtoy
IFPA-Université de Liège (Belgium)

Valence transversities: the collinear extraction

DIS 2013
Marseille

Aurore Courtoy
IFPA-Université de Liège (Belgium)

State-of-the-art: Extractions of transversity

"TMD extraction"

State-of-the-art:
Extractions of transversity

"Collinear extraction"
Pavia 11-12

State-of-the-art:

Extractions of transversity

"Collinear extraction"
Pavia 11-12
"Torino-Cagliari-JLab extraction" Torino 09 \& 1303.3822

State-of-the-art:

Extractions of transversity

"TMD extraction"

"Collinear extraction"
Pavia 11-12

Talk by S. Melis
"Torino-Cagliari-JLab extraction" Torino 09 \&1303.3822

State-of-the-art:

Extractions of transversity

"TMD extraction"

Talk by S. Melis

"Collinear extraction"
Pavia 11-12
This talk
"Torino-Cagliari-JLab extraction" Torino 09 \&1303.3822

State-of-the-art:

Extractions of transversity

"TMD extraction"
"Torino-Cagliari-JLab extraction" Torino 09 \&1303.3822

State-of-the-art:
Extractions of transversity

"Collinear extraction"
Pavia 11-12
This talk

UPDATE "Collinear extraction"
Pavia 13 JHEP 1303 (2013) 119

Dihadron Fragmentation Functions in a nutshell

\downarrow TMD FF $\quad D_{1}^{q \rightarrow h}\left(z, \kappa_{T}^{2}\right)$

TMD factorization

Dihadron Fragmentation Functions in a nutshell

\checkmark TMD FF

$$
D_{1}^{q \rightarrow h}\left(z, \kappa_{T}^{2}\right)
$$

TMD factorization

- DiFF

$$
D_{1}^{q \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, R_{T}^{2}\right)
$$

Collinear factorization

Here:

$$
D_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}\right)
$$

$$
z=z_{1}+z_{2}
$$

$$
2|\mathbf{R}|=\sqrt{M_{h}^{2}-4 m_{\pi}^{2}}
$$

Two complementary approaches

- partner of Collins FF
- convolution

$$
\int d^{2} \mathbf{p}_{T} d^{2} \mathbf{k}_{T} \delta^{2}\left(\mathbf{k}_{T}+\mathbf{q}_{T}-\mathbf{p}_{T}\right) h_{1}\left(x, k_{T}\right) H_{1}^{\perp}\left(z, p_{T}\right)
$$

- QCD evolution: TMD evolution
- ongoing progresses
[Rogers, Aybat, Prokudin, Bacchetta,...]
- need input Functional Form of the transversity
- partner of chiral-odd DiFF
- simple product

$$
h_{1}(x) H_{1}^{\varangle}\left(z, M_{h}\right)
$$

- QCD evolution: DGLAP evolution
- known
[Bacchetta, Radici, Ceccopieri]
- no need for input Functional Form of the transversity
- direct extraction point by point

Frameworks for DiFFs

Frameworks for DiFFs

Frameworks for DiFFs

Talks by
N. Makke
C. Braun
S. Gliske

Frameworks for DiFFs

Talks by
N. Makke
C. Braun
S. Gliske

Frameworks for DiFFs

Talks by
N. Makke
C. Braun
S. Gliske
$\mathrm{e}^{+} \mathrm{e}^{-}$to pion pairs

Talk by
I. Garzia

Frameworks for DiFFs

SIDIS production of pion pairs

@ COMPASS \& HERMES

Chiral-odd DiFF:

Distribution of hadrons inside the jet is related to the

Direction of the transverse polarization of the fragmenting quarks

$$
A_{\mathrm{DIS}}\left(x, z, M_{h}^{2}, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) \frac{|\bar{R}|}{M_{h}} H_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}, Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) \quad D_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}, Q^{2}\right)}
$$

SIDIS production of pion pairs

@ COMPASS \& HERMES

Chiral-odd DiFF:

Distribution of hadrons inside the jet is related to the

Direction of the transverse polarization of the fragmenting quarks

$$
A_{\mathrm{DIS}}\left(x, z, M_{h}^{2}, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right), \frac{|\bar{R}|}{M_{h}} H_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}, Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right)} D_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}, Q^{2}\right)
$$

Knowledge on DiFFs leads to $h_{1}\left(x, Q^{2}\right)$

SIDIS production of pion pairs

@ COMPASS \& HERMES

2002-4 Deuteron Data

2007 Proton Data

SIDIS production of pion pairs

@ COMPASS \& HERMES

2002-4 Deuteron Data

2007 Proton Data

SIDIS production of pion pairs

@ COMPASS \& HERMES

2002-4 Deuteron Data

2007 Proton Data

$\left(\mathbf{z}, \mathbf{M}_{\mathrm{h}}\right)$-dpdence determined by DiFF from Belle
[A.C., Bacchetta, Radici, Bianconi, Phys.Rev. D85]

COMPASS range: $0.2<z<1 \& 0.29<\mathrm{M}_{\mathrm{h}}<1.29 \mathrm{GeV}$

$$
\begin{aligned}
& n_{q}\left(Q^{2}\right)=\int d z d M_{h} D_{1}^{q}\left(z, M_{h} ; Q^{2}\right) \\
& n_{q}^{\uparrow}\left(Q^{2}\right)=\int d z d M_{h} \frac{|\mathbf{R}|}{M_{h}} H_{1, s p}^{\varangle q}\left(z, M_{h} ; Q^{2}\right)
\end{aligned}
$$

SIDIS production of pion pairs

@ COMPASS \& HERMES

Transversity from $A_{u t} \sin \left(\Phi_{R}+\Phi_{S}\right) \sin \theta$

$$
A_{\mathrm{DIS}}\left(x, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) n_{q}^{\uparrow}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) n_{q}\left(Q^{2}\right)}
$$

Using symmetries for DiFFs:

$$
H_{1}^{\varangle, u}=-H_{1}^{\varangle, d}=-\bar{H}_{1}^{\varangle, u}=\bar{H}_{1}^{\varangle, d}
$$

$$
\begin{aligned}
& D_{1}^{u}=D_{1}^{d}=\bar{D}_{1}^{u}=\bar{D}_{1}^{d} \\
& D_{1}^{s}=\bar{D}_{1}^{s}, \quad D_{1}^{c}=\bar{D}_{1}^{c}
\end{aligned}
$$

Proton

$$
x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right) \propto-A_{\mathrm{DIS}}\left(x, Q^{2}\right) \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} \sum_{q=u, d, s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}\left(x, Q^{2}\right)
$$

Deuteron

$$
x h_{1}^{u_{v}}\left(x, Q^{2}\right)+x h_{1}^{d_{v}}\left(x, Q^{2}\right) \propto-\frac{5}{3} A_{\mathrm{DIS}}\left(x, Q^{2}\right) \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} x\left(f_{1}^{u+\bar{u}}+f_{1}^{d+\bar{d}}+\frac{2}{5} f_{1}^{s+\bar{s}}\right)
$$

and combinations of both ...

Transversity from $A_{u t} \sin \left(\Phi_{R}+\Phi_{S}\right) \sin \theta$

$$
A_{\mathrm{DIS}}\left(x, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) n_{q}^{\uparrow}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) n_{q}\left(Q^{2}\right)}
$$

Using symmetries for DiFFs:

$$
H_{1}^{\varangle, u}=-H_{1}^{\varangle, d}=-\bar{H}_{1}^{\varangle, u}=\bar{H}_{1}^{\varangle, d}
$$

$$
\begin{aligned}
& D_{1}^{u}=D_{1}^{d}=\bar{D}_{1}^{u}=\bar{D}_{1}^{d} \\
& D_{1}^{s}=\bar{D}_{1}^{s}, \quad D_{1}^{c}=\bar{D}_{1}^{c}
\end{aligned}
$$

Proton

$$
x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right) \propto-A_{\mathrm{DIS}}\left(x, Q^{2}\right) \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} \sum_{q=u, d, s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}\left(x, Q^{2}\right)
$$

Deuteron

$$
x h_{1}^{u_{v}}\left(x, Q^{2}\right)+x h_{1}^{d_{v}}\left(x, Q^{2}\right) \propto-\frac{5}{3} A_{\mathrm{DIS}}\left(x, Q^{2}\right) \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} x\left(f_{1}^{u+\bar{u}}+f_{1}^{d+\bar{d}}+\frac{2}{5} f_{1}^{s+\bar{s}}\right)
$$

and combinations of both ...

Transversity from $A_{u t} \sin \left(\Phi_{R}+\Phi_{S}\right) \sin \theta$

$$
A_{\mathrm{DIS}}\left(x, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) n_{q}^{\uparrow}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) n_{q}\left(Q^{2}\right)}
$$

Using symmetries for DiFFs:

$$
H_{1}^{\varangle, u}=-H_{1}^{\varangle, d}=-\bar{H}_{1}^{\varangle, u}=\bar{H}_{1}^{\varangle, d}
$$

$$
\begin{aligned}
& D_{1}^{u}=D_{1}^{d}=\bar{D}_{1}^{u}=\bar{D}_{1}^{d} \\
& D_{1}^{s}=\bar{D}_{1}^{s}, \quad D_{1}^{c}=\bar{D}_{1}^{c}
\end{aligned}
$$

Proton

$$
x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right) \propto-A_{\mathrm{DIS}}\left(x, Q^{2}\right) \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} \sum_{q=u, d, s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}\left(x, Q^{2}\right)
$$

Deuteron

$$
x h_{1}^{u_{v}}\left(x, Q^{2}\right)+x h_{1}^{d_{v}}\left(x, Q^{2}\right) \propto-\frac{5}{3} A_{\mathrm{DIS}}\left(x, Q^{2}\right) \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} x\left(f_{1}^{u+\bar{u}}+f_{1}^{d+\bar{d}}+\frac{2}{5} f_{1}^{s+\bar{s}}\right)
$$

and combinations of both ...
We take results for our analysis
from pion pair production in $\mathrm{e}^{+} \mathbf{e}^{-}$annihilation at Belle

Transversity from e $p^{\dagger} \rightarrow e^{\prime}\left(\pi^{+} \pi^{-}\right) X$ @ HERMES

$$
x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right)=-C_{y}^{-1} A_{\mathrm{DIS}}\left(x, Q^{2}\left(\frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\top}\left(Q^{2}\right)} \sum_{q=u, d, s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}\left(x, Q^{2}\right)\right.\right.
$$

with 1-to-100 GeV² evolution correction: small corrections

HERMES range: $-0.259^{-1}(\pm 25 \%$ theo. err.) from fit

Transversity from e $p^{\uparrow} \rightarrow e^{\prime}\left(\pi^{+} \pi^{-}\right)$X @ HERMES

with 1-to-100 GeV² evolution correction: small corrections

HERMES range: $\quad-0.259^{-1}(\pm 25 \%$ theo. err.) from fit

Transversity from e $p^{\uparrow} \rightarrow e^{\prime}\left(\pi^{+} \pi^{-}\right)$X @ COMPASS 2007

with 1-to-100 GeV² evolution correction: negligible corrections

COMPASS range: $-0.208^{-1}(\pm 19 \%$ theo. err.) from fit

Transversity from Proton data

Transversity from pion pair production SIDIS off transversely polarized target

- from HERMES data
- DiFF analysis
point by point from fit
- PRL 107
- from COMPASS data
- DiFF analysis
point by point from fit
- JHEP 1303

Transversity from Deuteron data

- from COMPASS data
- DiFF analysis
point by point from fit

- JHEP 1303

Fitting the Valence Transversities

Fitting the Valence Transversities

Constraints from first principles
\rightarrow Soffer bound

$$
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq\left|f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{q}\left(x, Q^{2}\right)\right| \equiv 2 \mathrm{SB}^{q}\left(x, Q^{2}\right)
$$

$\leftrightarrow h_{1}(x=1)=0$; the parton model predicts $h_{1}(x=0)=0$ but too restrictive in QCD

Fitting the Valence Transversities

Constraints from first principles

- Soffer bound

$$
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq\left|f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{q}\left(x, Q^{2}\right)\right| \equiv 2 \mathrm{SB}^{q}\left(x, Q^{2}\right)
$$

$\checkmark h_{1}(x=1)=0 \quad$; the parton model predicts $h_{1}(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code
\uparrow of the Soffer bound: LO evolution of $f_{1}(x)$ from MSTW08 \& $g_{1}(x)$ from DSS
\uparrow of the DiFF \& $h_{1}: \quad$ LO as in previous papers

Fitting the Valence Transversities

Constraints from first principles

- Soffer bound

$$
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq\left|f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{q}\left(x, Q^{2}\right)\right| \equiv 2 \mathrm{SB}^{q}\left(x, Q^{2}\right)
$$

$\checkmark h_{1}(x=1)=0 \quad$; the parton model predicts $h_{1}(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code
\uparrow of the Soffer bound: LO evolution of $f_{1}(x)$ from MSTW08 \& $g_{1}(x)$ from DSS
\star of the DiFF \& $h_{1}: \quad$ LO as in previous papers

Choice of Functional Form

Fitting the Valence Transversities

Constraints from first principles

- Soffer bound

$$
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq\left|f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{q}\left(x, Q^{2}\right)\right| \equiv 2 \mathrm{SB}^{q}\left(x, Q^{2}\right)
$$

$\checkmark h_{1}(x=1)=0 \quad$; the parton model predicts $h_{1}(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code
\uparrow of the Soffer bound: LO evolution of $f_{1}(x)$ from MSTW08 \& $g_{1}(x)$ from DSS
\star of the DiFF \& $h_{1}: \quad$ LO as in previous papers

Choice of Functional Form

Fitting the Valence Transversities

Constraints from first principles

- Soffer bound

$$
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq\left|f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{q}\left(x, Q^{2}\right)\right| \equiv 2 \mathrm{SB}^{q}\left(x, Q^{2}\right)
$$

$\checkmark h_{1}(x=1)=0 \quad$; the parton model predicts $h_{1}(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code
\uparrow of the Soffer bound: LO evolution of $f_{1}(x)$ from MSTW08 \& $g_{1}(x)$ from DSS
\star of the DiFF \& $h_{1}: \quad$ LO as in previous papers

Choice of Functional Form

the CRUCIAL point for further uses

Fitting the Valence Transversities

Constraints from first principles

- Soffer bound

$$
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq\left|f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{q}\left(x, Q^{2}\right)\right| \equiv 2 \mathrm{SB}^{q}\left(x, Q^{2}\right)
$$

$\leftrightarrow h_{1}(x=1)=0$; the parton model predicts $h_{1}(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code
\downarrow of the Soffer bound: LO evolution of $f_{1}(x)$ from MSTW08 \& $g_{1}(x)$ from DSS
\star of the DiFF \& h_{1} : LO as in previous papers

Choice of Functional Form

$$
x h_{1}^{q_{V}}\left(x, Q_{0}^{2}\right)=F F\left(\operatorname{param}, x, Q_{0}^{2}\right)\left(x \mathrm{SB}^{q}\left(x, Q_{0}^{2}\right)+x \mathrm{SB}^{\bar{q}}\left(x, Q_{0}^{2}\right)\right)
$$

Fitting the Valence Transversities

Constraints from first principles

- Soffer bound

$$
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq\left|f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{q}\left(x, Q^{2}\right)\right| \equiv 2 \mathrm{SB}^{q}\left(x, Q^{2}\right)
$$

$\leftrightarrow h_{1}(x=1)=0$; the parton model predicts $h_{1}(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code
\downarrow of the Soffer bound: LO evolution of $f_{1}(x)$ from MSTW08 \& $g_{1}(x)$ from DSS
\checkmark of the DiFF \& $h_{1}: \quad$ LO as in previous papers

Choice of Functional Form
$\longleftarrow \quad$ the CRUCIAL point for further uses

$$
x h_{1}^{q_{V}}\left(x, Q_{0}^{2}\right)=F F\left(\text { param, } x, Q_{0}^{2}\right)\left(x \mathrm{SB}^{q}\left(x, Q_{0}^{2}\right)+x \mathrm{SB}^{\bar{q}}\left(x, Q_{0}^{2}\right)\right)
$$

The Functional Form

$$
x h_{1}^{q_{V}}(x)=\tanh \left(x^{1 / 2}\left(A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}\right)\right)\left(x \mathrm{SB}^{q}(x)+x \mathrm{SB}^{\bar{q}}(x)\right)
$$

1st order polynomial

$$
A_{q}+B_{q} x
$$

2nd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}
$$

3rd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}
$$

The Functional Form

$$
x h_{1}^{q_{V}}(x)=\tanh \left(x^{1 / 2}\left(A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}\right)\right)\left(x \mathrm{SB}^{q}(x)+x \mathrm{SB}^{\bar{q}}(x)\right)
$$

1st order polynomial
judicious choice for integrability of the transversities

$$
A_{q}+B_{q} x
$$

2nd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}
$$

3rd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}
$$

The Functional Form

$$
x h_{1}^{q_{V}}(x)=\tanh \left(x^{1 / 2}\left(A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}\right)\right)\left(x \mathrm{SB}^{q}(x)+x \mathrm{SB}^{\bar{q}}(x)\right)
$$

1st order polynomial
judicious choice for integrability of the transversities

$$
A_{q}+B_{q} x
$$

2nd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}
$$

$$
\chi^{2} / d . o . f . \simeq 1.1
$$

3rd order polynomial
no significant change in the $X^{2} /$ dof in the 3 versions

$$
A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}
$$

The Functional Form

$$
x h_{1}^{q_{V}}(x)=\tanh \left(x^{1 / 2}\left(A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}\right)\right)\left(x \mathrm{SB}^{q}(x)+x \mathrm{SB}^{\bar{q}}(x)\right)
$$

1st order polynomial

$$
A_{q}+B_{q} x
$$

2nd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}
$$

judicious choice for integrability of the transversities

Rigid version

The Functional Form

$$
x h_{1}^{q_{V}}(x)=\tanh \left(x^{1 / 2}\left(A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}\right)\right)\left(x \mathrm{SB}^{q}(x)+x \mathrm{SB}^{\bar{q}}(x)\right)
$$

1st order polynomial

$$
A_{q}+B_{q} x
$$

2nd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}
$$

Flexible version

ε
judicious choice for integrability of the transversities

$$
\chi^{2} / d . o . f . \simeq 1.1
$$

no significant change in the $X^{2} /$ dof in the 3 versions

$$
A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}
$$

The Functional Form

$$
x h_{1}^{q_{V}}(x)=\tanh \left(x^{1 / 2}\left(A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}\right)\right)\left(x \mathrm{SB}^{q}(x)+x \mathrm{SB}^{\bar{q}}(x)\right)
$$

1st order polynomial

$$
A_{q}+B_{q} x
$$

2nd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}
$$

Flexible version

judicious choice for integrability of the transversities

$$
\chi^{2} / d . o . f . \simeq 1.1
$$

3rd order polynomial

$$
A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}
$$

Our Rigid Functional Form 1st order polynomial

Our Rigid Functional Form 1st order polynomial

Our Rigid Functional Form 1st order polynomial

Our Flexible Functional Form 2nd order polynomial

Our Flexible Functional Form 2nd order polynomial

Flexible version

Our Flexible Functional Form 2nd order polynomial

The Error Analysis:
 the Monte Carlo approach

Too small errors w.r.t. ABSENCE of data
\star the error is smaller where there are NO data \rightarrow low and large-x !!!

- standard error propagation dictated by error on parameters

The Error Analysis: the Monte Carlo approach

Too small errors w.r.t. ABSENCE of data
\star the error is smaller where there are NO data \rightarrow low and large-x !!!

- standard error propagation dictated by error on parameters
\uparrow generate n sets of data with gaussian noise (@1 σ) $\rightarrow \boldsymbol{n}$ replicas
\uparrow redo the fit \boldsymbol{n} times
\uparrow keep the 1σ distributed resulting "transversities", at each data point
\uparrow the error band is now made by 68% of the n replica point by point

The Error Analysis: the Monte Carlo approach

Too small errors w.r.t. ABSENCE of data
\uparrow the error is smaller where there are NO data \rightarrow Iow and large-x !!!
\downarrow standard error propagation dictated by error on parameters
\uparrow generate n sets of data with gaussian noise (@1 σ) $\rightarrow \boldsymbol{n}$ replicas
\uparrow redo the fit \boldsymbol{n} times
\uparrow keep the 1σ distributed resulting "transversities", at each data point
\checkmark the error band is now made by $\mathbf{6 8 \%}$ of the n replica point by point

Distribution of the X^{2} for

- n=100 replica
- our flexible functional form

The Error Analysis:

the Monte Carlo approach
1st order polynomial

The Error Analysis:

the Monte Carlo approach
1st order polynomial

The Error Analysis:

the Monte Carlo approach 2nd order polynomial

The Error Analysis:

the Monte Carlo approach 2nd order polynomial

The Error Analysis:

the Monte Carlo approach 3rd order polynomial

The Error Analysis:

the Monte Carlo approach 3rd order polynomial

Tensor Charge

where we have data

6. MC extra flexible
5. standard extra flexible
4. MC flexible
3. standard flexible
2. MC rigid

1. standard rigid

$$
\delta q=\int_{6.4 \times 10^{-3}}^{0.28} d x h_{1}^{q_{v}}(x)
$$

Tensor Charge

full range $10^{-10}-1$

$$
\delta q=\int_{\sim 0}^{1} d x h_{1}^{q_{v}}(x)
$$

Conclusion

Extraction of valence transversities from collinear framework

- Transversity via DiFF
- Flavor decomposition thanks to the available proton and deuteron data
- Fits for $h_{1}{ }^{u} \& h_{1}{ }^{d}$
[Bacchetta, A.C., Radici, JHEP 1303 (2013) 119]
- Functional Form crucial to standard fitting procedure
\Rightarrow Highly unconstrained outside data range
\Rightarrow Important! e.g., for tensor charge
\Rightarrow We NEED more data at higher x-values \rightarrow JLab@12GeV
- Monte Carlo-like error analysis
\Rightarrow Compatible with standard analysis
\Rightarrow Bigger errorbands

Outlook

- Dihadron Fragmentation Functions
- Fits in $\left(z, M_{h}, Q^{2}\right)$ with more accurate Q^{2} evolution
- Data for Unpolarized DiFF
- Transversity via DiFF
- Flavor decomposition
- Fits for $h_{1}{ }^{4} \& h_{1}{ }^{d}$
we need Kaon data from Belle as well
we need data for $x>0.3$!

Back-up slides

Aut $^{\sin \left(\Phi_{R}+\Phi_{S}\right) \sin \theta}$
@ HERMES

↔ integrated over $0.5<\mathrm{Mh}<1 \mathrm{GeV}$

* integrated over $0.2<z<1$

$$
n_{q}\left(Q^{2}\right)=\int d z d M_{h}^{2} D_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}, Q^{2}\right)
$$

$$
A_{\mathrm{DIS}}\left(x, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) n_{q}^{\uparrow}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) n_{q}\left(Q^{2}\right)}
$$

$$
A_{\mathrm{DIS}}\left(x, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) n_{q}^{\uparrow}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) n_{q}\left(Q^{2}\right)}
$$

$$
A_{\mathrm{DIS}}\left(x, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) n_{q}^{\uparrow}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) n_{q}\left(Q^{2}\right)}
$$

$$
A_{\mathrm{DIS}}\left(x, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) n_{q}^{\uparrow}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) n_{q}\left(Q^{2}\right)}
$$

$$
x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right)=-C_{y}^{-1} A_{\mathrm{DIS}}\left(x, Q^{2}\right) \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} \sum_{q=u, d, s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}\left(x, Q^{2}\right)
$$

$$
A_{\mathrm{DIS}}\left(x, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right) n_{q}^{\uparrow}\left(Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right) n_{q}\left(Q^{2}\right)}
$$

$$
x h_{1}^{u_{v}}\left(x, Q^{2}\right)-\frac{1}{4} x h_{1}^{d_{v}}\left(x, Q^{2}\right)=-C_{y}^{-1} A_{\mathrm{DIS}}\left(x, Q^{2}\right) \frac{n_{u}\left(Q^{2}\right)}{n_{u}^{\uparrow}\left(Q^{2}\right)} \sum_{q=u, d, s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}\left(x, Q^{2}\right)
$$

Off the record: COMPASS data on Proton 2010

2nd order polynomial

COMPASS 2004 (P) \& 2007 (D)

COMPASS 2010 (P) \& 2007 (D)

Comparison with extraction

Semi-Inclusive production of pion pair in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

@Belle
[Belle, Phys.Rev.Lett.107.072004]

- 2 hemispheres
- azimuthal modulation between the 2 hemispheres

$$
A_{e+e-}\left(z, M_{h}^{2}, \bar{z}, \bar{M}_{h}^{2}\right) \propto-f\left(\theta_{2}\right) g(\theta) g(\bar{\theta}) \frac{\sum_{q} e_{q}^{2} H_{1}^{\varangle q}\left(z, M_{h}^{2}\right) H_{1}^{\varangle q}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) D_{1}^{q}\left(\bar{z}, \bar{M}_{h}^{2}\right)}
$$

Semi-Inclusive production of pion pair in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

@Belle
[Belle, Phys.Rev.Lett.107.072004]

- 2 hemispheres
- azimuthal modulation between the 2 hemispheres

$$
A_{e+e-}\left(z, M_{h}^{2}, \bar{z}, \bar{M}_{h}^{2}\right) \propto-f\left(\theta_{2}\right) g(\theta) g(\bar{\theta}) \frac{\sum_{q} e_{q}^{2} H_{1}^{\varangle q}\left(z, M_{h}^{2}\right) H_{1}^{\varangle q}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) D_{1}^{q}\left(\bar{z}, \bar{M}_{h}^{2}\right)}
$$

Two ways of analyzing the DiFFs

- 1st analysis: direct analysis from experimental data
- 2nd analysis: analysis from fit of the data

Comparison with extraction

DEUTERON

Monte Carlo Approach:

Monte Carlo Approach:

some illustrations

Can we find "unforeseen" replica?

Yes, here at $1 \mathrm{GeV}^{2}$

$X^{2} /$ dof
1.56557
1.42199
1.79911
2.07397
1.75523

