Valence transversities: the collinear extraction

DIS 2013 Marseille

Aurore Courtoy IFPA-Université de Liège (Belgium)

Valence transversities: the collinear extraction

DIS 2013 Marseille

Aurore Courtoy IFPA-Université de Liège (Belgium)

in collaboration with Alessandro Bacchetta and Marco Radici in Pavia

"Collinear extraction" Pavia 11-12

"Collinear extraction" Pavia 11-12

"Torino-Cagliari-JLab extraction" Torino 09 &1303.3822

"Collinear extraction" Pavia 11-12

"Torino-Cagliari-JLab extraction" Torino 09 &1303.3822

 $x h_1^{u_V}(x) - x h_1^{d_V}(x)/4$ extraction from HERMES data 0.2 extraction from COMPASS data $\Delta^{\sf N} \, {\sf D}_{\pi^+/{\sf u}}({\sf z})$ 0.4 Q²=2.41 GeV² Ô²1 0.0 Ν $\frac{x}{x h_1}^{u_V}(x) + x h_1^{d_V}(x)$ $\Delta^{\mathsf{N}} D_{\pi^{-}/u}(z)$ 0.6 extraction from COMPASS data 0.4 -0.1 2013 0.0 Ν 2008 -022 0.2 0.4 0.6 8.0 0 -0.4 0.01 0.10 Ζ х

> "Collinear extraction" Pavia 11-12

This talk

"Torino-Cagliari-JLab extraction" Torino 09 &1303.3822

 $x h_1^{u_V}(x) - x h_1^{d_V}(x)/4$ extraction from HERMES data 0.2 extraction from COMPASS data $\Delta^{\sf N} \, {\sf D}_{\pi^+/{\sf u}}({\sf z})$ 0.4 $Q^2 = 2.41 \text{ GeV}^2$ 0²1 0.0 Ν $x h_1^{u_V}(x) + x h_1^{d_V}(x)$ $\Delta^{\mathsf{N}} \operatorname{D}_{\pi^{-}/\mathsf{u}}(\mathsf{z})$ 0.6 extraction from COMPASS data 0.4 -0.1 2013 0.0 Ν 2008 -022 0.2 0.4 06 0.8 0 -0.4 0.01 0.10 Ζ х

> "Collinear extraction" Pavia 11-12

This talk

"Torino-Cagliari-JLab extraction" Torino 09 &1303.3822

State-of-the-art: Extractions of transversity

UPDATE "Collinear extraction" Pavia 13 JHEP 1303 (2013) 119

Dihadron Fragmentation Functions in a nutshell

TMD factorization

Dihadron Fragmentation Functions in a nutshell

Two complementary approaches

- partner of Collins FF
- convolution

$$\int d^2 \mathbf{p}_T d^2 \mathbf{k}_T \, \delta^2(\mathbf{k}_T + \mathbf{q}_T - \mathbf{p}_T) \, h_1(x, k_T) \, H_1^{\perp}(z, p_T)$$

- QCD evolution: TMD evolution
- ongoing progresses

[Rogers, Aybat, Prokudin, Bacchetta,...]

• need input Functional Form of the transversity

- partner of chiral-odd DiFF
- simple product

$$h_1(x) H_1^{\triangleleft}(z, M_h)$$

- QCD evolution: DGLAP evolution
- known

[Bacchetta, Radici, Ceccopieri]

- no need for input Functional Form of the transversity
- direct extraction point by point

S. Gliske

@ COMPASS & HERMES

Chiral-odd DiFF:

Distribution of hadrons inside the jet *is related to the*

Direction of the transverse polarization of the fragmenting quarks

$$A_{\text{DIS}}(x, z, M_h^2, Q^2) = -C_y \frac{\sum_q e_q^2 h_1^q(x, Q^2) \frac{|\bar{R}|}{M_h} H_{1,sp}^{q \to \pi^+ \pi^-}(z, M_h^2, Q^2)}{\sum_q e_q^2 f_1^q(x, Q^2) - D_1^{q \to \pi^+ \pi^-}(z, M_h^2, Q^2)}$$

@ COMPASS & HERMES

Chiral-odd DiFF:

Distribution of hadrons inside the jet *is related to the*

Direction of the transverse polarization of the fragmenting quarks

$$A_{\text{DIS}}(x, z, M_h^2, Q^2) = -C_y \frac{\sum_q e_q^2 h_1^q(x, Q^2)}{\sum_q e_q^2 f_1^q(x, Q^2)} \frac{\frac{|\bar{R}|}{M_h} H_{1,sp}^{q \to \pi^+ \pi^-}(z, M_h^2, Q^2)}{D_1^{q \to \pi^+ \pi^-}(z, M_h^2, Q^2)}$$

Knowledge on DiFFs leads to h₁(x, Q²)

@ COMPASS & HERMES

2002-4 Deuteron Data

2007 Proton Data

@ COMPASS & HERMES

2002-4 Deuteron Data -0.1 -0.15 $\langle A_{UT_{\mathcal{P}}}^{\sin \phi_{RS}} \sin \theta
angle$ (z, M_h)-dpdence determined 11 g by **DiFF** from Belle [A.C., Bacchetta, Radici, Bianconi, Phys.Rev. D85 -0.1 **2007 Proton Data** -0.15 10⁻² **10**⁻¹ 0.2 0.4 0.6 0.8 0.5 1 1.5 $M_{hh} \, [\text{GeV}/c^2]$ x z

@ COMPASS & HERMES

2002-4 Deuteron Data -0.1 -0.15 (z, M_h)-dpdence determined by **DiFF** from Belle [A.C., Bacchetta, Radici, Bianconi, Phys.Rev. D85 -0.1 **2007 Proton Data** -0.15 10⁻² **10**⁻¹ 0.2 0.4 0.6 0.8 0.5 1 1.5 $M_{hh} \, [\text{GeV}/c^2]$ x Z

COMPASS range: 0.2<z<1 & 0.29<M_h<1.29 GeV

$$n_q(Q^2) = \int dz dM_h D_1^q(z, M_h; Q^2)$$
$$n_q^{\uparrow}(Q^2) = \int dz dM_h \frac{|\mathbf{R}|}{M_h} H_{1,sp}^{\triangleleft q}(z, M_h; Q^2)$$

@ COMPASS & HERMES

Fransversity from A_{UT} sin(Φ_R+Φ_s)sinθ

Deuteron

$$xh_1^{u_v}(x,Q^2) + xh_1^{d_v}(x,Q^2) \propto -\frac{5}{3}A_{\text{DIS}}(x,Q^2)\frac{n_u(Q^2)}{n_u^{\uparrow}(Q^2)}x\left(f_1^{u+\bar{u}} + f_1^{d+\bar{d}} + \frac{2}{5}f_1^{s+\bar{s}}\right)$$

and combinations of both ...

Fransversity from A_{UT} sin(Φ_R+Φ_s)sinθ

and combinations of both ...

Fransversity from A_{UT} sin(Φ_R+Φ_s)sinθ

and combinations of both ...

We take results for our analysis from pion pair production in e⁺e⁻ annihilation at Belle

Transversity from e $p^{\uparrow} \rightarrow e^{\prime} (\pi^{+}\pi^{-}) X @ HERMES$

Transversity from e $p^{\uparrow} \rightarrow e^{\prime} (\pi^{+}\pi^{-}) X @ HERMES$

Transversity from e $p^{\uparrow} \rightarrow e' (\pi^{+}\pi^{-}) X @ COMPASS 2007$

$$\begin{aligned} xh_1^{u_v}(x,Q^2) - \frac{1}{4}xh_1^{d_v}(x,Q^2) &= -C_y^{-1}A_{\text{DIS}}(x,Q^2\begin{pmatrix}n_u(Q^2)\\n_u^{\uparrow}(Q^2)\end{pmatrix}\sum_{q=u,d,s}\frac{e_q^2}{e_u^2}xf_1^{q+\bar{q}}(x,Q^2) \end{aligned}$$
with 1-to-100 GeV² evolution correction: negligible corrections
$$\begin{aligned} \text{COMPASS range: -0.208^{-1} (\pm 19\% \text{ theo. err.}) from fit} \end{aligned}$$

Transversity from Proton data

Transversity from pion pair production SIDIS off transversely polarized target

 $f_1(x)$ from MSTW08

Transversity from Deuteron data

COMPASS 2002-2004

• JHEP 1303

 $f_1(x)$ from MSTW08

Constraints from first principles

+ Soffer bound

$$2|h_1^q(x,Q^2)| \le |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \equiv 2\operatorname{SB}^q(x,Q^2)$$

+ $h_1(x=1)=0$; the parton model predicts $h_1(x=0)=0$ but too restrictive in QCD

Constraints from first principles

+ Soffer bound

$$2|h_1^q(x,Q^2)| \le |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \equiv 2\operatorname{SB}^q(x,Q^2)$$

+ $h_1(x=1)=0$; the parton model predicts $h_1(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code

- ★ of the Soffer bound: LO evolution of f₁(x) from MSTW08 & g₁(x) from DSS
- ✦ of the DiFF & h₁: LO as in previous papers

Constraints from first principles

+ Soffer bound

$$2|h_1^q(x,Q^2)| \le |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \equiv 2\operatorname{SB}^q(x,Q^2)$$

+ $h_1(x=1)=0$; the parton model predicts $h_1(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code

★ of the Soffer bound: LO evolution of f₁(x) from MSTW08 & g₁(x) from DSS

♦ of the DiFF & h₁: LO as in previous papers

Choice of Functional Form

Constraints from first principles

+ Soffer bound

$$2|h_1^q(x,Q^2)| \le |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \equiv 2\operatorname{SB}^q(x,Q^2)$$

+ $h_1(x=1)=0$; the parton model predicts $h_1(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code

★ of the Soffer bound: LO evolution of f₁(x) from MSTW08 & g₁(x) from DSS

♦ of the DiFF & h₁: LO as in previous papers

Choice of Functional Form

the CRUCIAL point for further uses

Fitting the Valence Transversities

Constraints from first principles

+ Soffer bound

$$2|h_1^q(x,Q^2)| \le |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \equiv 2\operatorname{SB}^q(x,Q^2)$$

+ $h_1(x=1)=0$; the parton model predicts $h_1(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code

★ of the Soffer bound: LO evolution of f₁(x) from MSTW08 & g₁(x) from DSS

♦ of the DiFF & h₁: LO as in previous papers

Choice of Functional Form

<--- the

the CRUCIAL point for further uses

Fitting the Valence Transversities

Constraints from first principles

+ Soffer bound

$$2|h_1^q(x,Q^2)| \le |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \equiv 2\operatorname{SB}^q(x,Q^2)$$

+ $h_1(x=1)=0$; the parton model predicts $h_1(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code

◆ of the Soffer bound: LO evolution of f₁(x) from MSTW08 & g₁(x) from DSS

✦ of the DiFF & h₁: LO as in previous papers

Choice of Functional Form

the CRUCIAL point for further uses

$$x h_1^{q_V}(x, Q_0^2) = FF(\text{param}, x, Q_0^2) \left(x \operatorname{SB}^q(x, Q_0^2) + x \operatorname{SB}^{\bar{q}}(x, Q_0^2) \right)$$

with FF defined [-1,1]

Fitting the Valence Transversities

Constraints from first principles

+ Soffer bound

$$2|h_1^q(x,Q^2)| \le |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \equiv 2\operatorname{SB}^q(x,Q^2)$$

+ $h_1(x=1)=0$; the parton model predicts $h_1(x=0)=0$ but too restrictive in QCD

QCD evolution with HOPPET code

★ of the Soffer bound: LO evolution of f₁(x) from MSTW08 & g₁(x) from DSS

♦ of the DiFF & h₁: LO as in previous papers

Choice of Functional Form

the CRUC

the CRUCIAL point for further uses

$$x h_1^{q_V}(x, Q_0^2) = FF(\text{param}, x, Q_0^2) \left(x \operatorname{SB}^q(x, Q_0^2) + x \operatorname{SB}^{\bar{q}}(x, Q_0^2) \right)$$

with FF defined [-1,1]

@
$$Q_0^2$$

$$x h_1^{q_V}(x) = \tanh\left(x^{1/2} \left(A_q + B_q x + C_q x^2 + D_q x^3\right)\right) \left(x \operatorname{SB}^q(x) + x \operatorname{SB}^{\bar{q}}(x)\right)$$

1st order polynomial

$$A_q + B_q x$$

2nd order polynomial

$$A_q + B_q x + C_q x^2$$

3rd order polynomial

$$A_q + B_q x + C_q x^2 + D_q x^3$$

@
$$Q_0^2$$

$$x h_1^{q_V}(x) = \tanh\left(x^{1/2} (A_q + B_q x + C_q x^2 + D_q x^3)\right) \left(x \operatorname{SB}^q(x) + x \operatorname{SB}^{\bar{q}}(x)\right)$$

1st order polynomial

$$A_q + B_q x$$

2nd order polynomial

$$A_q + B_q x + C_q x^2$$

3rd order polynomial

$$A_q + B_q x + C_q x^2 + D_q x^3$$

judicious choice for integrability of the transversities

$$(Q_0)^2$$

$$x h_1^{q_V}(x) = \tanh\left(x^{1/2} (A_q + B_q x + C_q x^2 + D_q x^3)\right) \left(x \operatorname{SB}^q(x) + x \operatorname{SB}^{\bar{q}}(x)\right)$$

1st order polynomial

$$A_q + B_q x$$

2nd order polynomial

$$A_q + B_q x + C_q x^2$$

3rd order polynomial

$$A_q + B_q x + C_q x^2 + D_q x^3$$

judicious choice for integrability of the transversities

$$\chi^2/d.o.f. \simeq 1.1$$

no significant change in the X²/ dof in the 3 versions

$$(Q_0)^2$$

$$x h_1^{q_V}(x) = \tanh\left(x^{1/2} \left(A_q + B_q x + C_q x^2 + D_q x^3\right)\right) \left(x \operatorname{SB}^q(x) + x \operatorname{SB}^{\bar{q}}(x)\right)$$

1st order polynomial

$$A_q + B_q x$$

2nd order polynomial

$$A_q + B_q x + C_q x^2$$

3rd order polynomial

$$A_q + B_q x + C_q x^2 + D_q x^3$$

judicious choice for integrability of the transversities

Rigid version

$$\chi^2/d.o.f. \simeq 1.1$$

no significant change in the X²/ dof in the 3 versions

$$(Q_0)^2$$

$$x h_1^{q_V}(x) = \tanh\left(x^{1/2} \left(A_q + B_q x + C_q x^2 + D_q x^3\right)\right) \left(x \operatorname{SB}^q(x) + x \operatorname{SB}^{\bar{q}}(x)\right)$$

1st order polynomial

$$A_q + B_q x$$

2nd order polynomial

$$A_q + B_q x + C_q x^2$$

3rd order polynomial

$$A_q + B_q x + C_q x^2 + D_q x^3$$

judicious choice for integrability of the transversities

$$\chi^2/d.o.f. \simeq 1.1$$

no significant change in the X²/ dof in the 3 versions

$$(Q_0)^2$$

$$x h_1^{q_V}(x) = \tanh\left(x^{1/2} \left(A_q + B_q x + C_q x^2 + D_q x^3\right)\right) \left(x \operatorname{SB}^q(x) + x \operatorname{SB}^{\bar{q}}(x)\right)$$

1st order polynomial

$$A_q + B_q x$$

2nd order polynomial

$$A_q + B_q x + C_q x^2$$

3rd order polynomial

$$A_q + B_q x + C_q x^2 + D_q x^3$$

Rigid version

 $\chi^2/d.o.f. \simeq 1.1$

no significant change in the X²/ dof in the 3 versions

Extra-flexible version

Our Rigid Functional Form 1st order polynomial

Our Rigid Functional Form 1st order polynomial

Our Rigid Functional Form 1st order polynomial

Our Flexible Functional Form 2nd order polynomial

Our Flexible Functional Form 2nd order polynomial

Flexible version

Our Flexible Functional Form 2nd order polynomial

Flexible version

The Error Analysis: the Monte Carlo approach

Too small errors w.r.t. ABSENCE of data

- standard error propagation dictated by error on parameters

The Error Analysis: the Monte Carlo approach

Too small errors w.r.t. ABSENCE of data

- + standard error propagation dictated by error on parameters
- + generate *n* sets of data with gaussian noise (@1σ) → *n* replicas
- ★ redo the fit n times
- + keep the 1 σ distributed resulting "transversities", at each data point
- + the error band is now made by 68% of the *n* replica point by point

The Error Analysis: the Monte Carlo approach

Too small errors w.r.t. ABSENCE of data

- + the error is smaller where there are NO data \rightarrow low and large-x !!!
- + standard error propagation dictated by error on parameters
- + generate *n* sets of data with gaussian noise (@1σ) → *n* replicas
- + redo the fit *n* times
- + keep the 1 σ distributed resulting "transversities", at each data point
- + the error band is now made by 68% of the *n* replica point by point

Distribution of the χ² for ➡ n=100 replica

our flexible functional form

The Error Analysis:the Monte Carlo approach1st order polynomial

The Error Analysis:the Monte Carlo approach1st order polynomial

Tensor Charge

where we have data

$$\delta q = \int_{6.4 \times 10^{-3}}^{0.28} dx \, h_1^{q_v}(x)$$

Tensor Charge

full range 10⁻¹⁰- 1

$$\delta q = \int_{\sim 0}^{1} dx \, h_1^{q_v}(x)$$

Conclusion

Extraction of valence transversities from collinear framework

- Transversity via DiFF
 - Flavor decomposition thanks to the available proton and deuteron data
 - Fits for h₁^u & h₁^d

- [Bacchetta, A.C., Radici, JHEP 1303 (2013) 119]
- Functional Form crucial to standard fitting procedure
 - Highly unconstrained outside data range
 - ➡ Important! e.g., for tensor charge
 - → We NEED more data at higher x-values → JLab@12GeV
- Monte Carlo-like error analysis
 - ➡ Compatible with standard analysis
 - Bigger errorbands

Outlook

- Dihadron Fragmentation Functions
 - **Fits** in (z, M_h, Q²) with more accurate Q² evolution
- [Bacchetta, Bianconi, Courtoy, Radici]

- Data for Unpolarized DiFF
- Transversity via DiFF
 - Flavor decomposition
 - Fits for h₁^u & h₁^d

we need Kaon data from Belle as well

we need data for x>0.3 !

Back-up slides

A_{UT} $\sin(\Phi_R + \Phi_s)\sin\theta$ @ **HERMES**

AUT $sin(Φ_R + Φ_s)sinθ$ @ HERMES

$$A_{\text{DIS}}(x,Q^2) = -C_y \, \frac{\sum_q e_q^2 h_1^q(x,Q^2) \, n_q^{\uparrow}(Q^2)}{\sum_q e_q^2 \, f_1^q(x,Q^2) \, n_q(Q^2)}$$

AUT $\sin(\Phi_R + \Phi_S)\sin\theta$ @ **HERMES**

AUT $\sin(\Phi_R + \Phi_S)\sin\theta$ @ **HERMES**

$$xh_1^{u_v}(x,Q^2) - \frac{1}{4}xh_1^{d_v}(x,Q^2) = -C_y^{-1}A_{\text{DIS}}(x,Q^2)\frac{n_u(Q^2)}{n_u^{\uparrow}(Q^2)}\sum_{q=u,d,s}\frac{e_q^2}{e_u^2}xf_1^{q+\bar{q}}(x,Q^2)$$

A_{UT} $sin(Φ_R + Φ_s)sinθ$ @ **HERMES**

Off the record: COMPASS data on Proton 2010

2nd order polynomial

Comparison with extraction

PROTON

DEUTERON

Semi-Inclusive production of pion pair in e⁺e⁻ annihilation

@Belle

[Belle, Phys.Rev.Lett.107.072004]

★ azimuthal modulation between the 2 hemispheres

$$A_{e+e-}(z, M_h^2, \bar{z}, \bar{M}_h^2) \propto -f(\theta_2) g(\theta) g(\bar{\theta}) \frac{\sum_q e_q^2 H_1^{\triangleleft q}(z, M_h^2) H_1^{\triangleleft q}(\bar{z}, \bar{M}_h^2)}{\sum_q e_q^2 D_1^q(z, M_h^2) D_1^q(\bar{z}, \bar{M}_h^2)}$$

Semi-Inclusive production of pion pair in e⁺e⁻ annihilation

@Belle

[Belle, Phys.Rev.Lett.107.072004]

★ azimuthal modulation between the 2 hemispheres

$$A_{e+e-}(z, M_h^2, \bar{z}, \bar{M}_h^2) \propto -f(\theta_2) g(\theta) g(\bar{\theta}) \frac{\sum_q e_q^2 H_1^{\triangleleft q}(z, M_h^2) H_1^{\triangleleft q}(\bar{z}, \bar{M}_h^2)}{\sum_q e_q^2 D_1^q(z, M_h^2) D_1^q(\bar{z}, \bar{M}_h^2)}$$

Two ways of analyzing the DiFFs

- ◆ 1st analysis: direct analysis from experimental data
- + 2nd analysis: analysis from fit of the data

[Bacchetta, A.C., Radici, PRL 107 (2011)]

[A.C., Bacchetta, Radici, Bianconi, Phys.Rev. D85]

Comparison with extraction

PROTON

rigid functional form

Monte Carlo Approach:

some illustrations

Can we find "unforeseen" replica?

Monte Carlo Approach:

some illustrations

