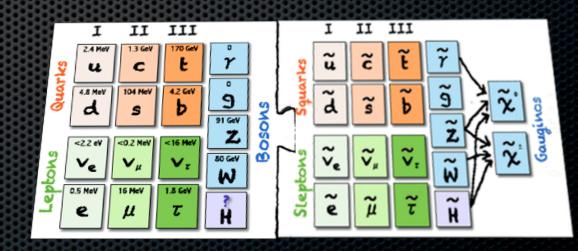
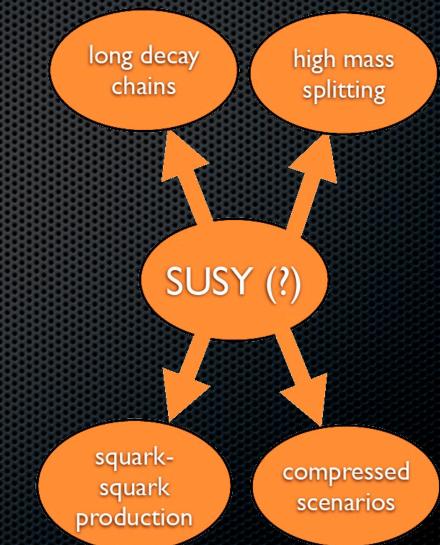
Estimating the SM background for supersymmetry searches: challenges and methods

Geert-Jan Besjes (On behalf of the ATLAS collaboration) (Nijmegen/Nikhef) 23 April 2013



Overview

- Supersymmetry
- SUSY at the LHC
- Reducible backgrounds
- Irreducible backgrounds
- Reweighting
- Conclusion

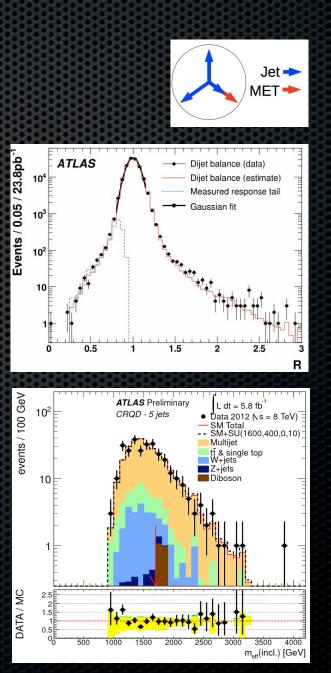

Supersymmetry

- Supersymmetry (SUSY) is a new symmetry between bosons and fermions
- Every Standard Model particle gets a partner particle
- Naturally solves the hierarchy problem in the Standard Model
- Could provide solutions to other problems:
 - dark matter candidate
 - gauge unifications
 - **H** ...
- Searches for supersymmetric particles ongoing at the LHC!

SUSY at the LHC

- If SUSY exists at the TeV scale, we expect to observe a strong production of squarks and gluinos at the LHC
- Sparticles will decay in a cascade producing quarks and gluons, appearing as jets, and possibly leptons
- Assuming R-parity conservation, the decays leads to production of the lightest SUSY particle (LSP) and thus E_T^{miss}
- A typical signature for SUSY production at the LHC, assuming R-parity conservation, is jets + E_T^{miss} (+leptons)
- All affected by a wide range of Standard Model backgrounds!

Reducible backgrounds


- **Broad range of signatures**, each affected by one or more of the following
- **Fake E**T^{miss}:
 - Multijets
 - jet smearing method (o-lepton inclusive, sbottom o-lepton)
 - templates (multijets analysis)
 - **Z->II+jets**: jet smearing method (2l stop, Z+E_T^{miss})
- **Fake leptons:** matrix method (any multilepton analysis, is main bkg)
- Charge misidentification (2l same-sign)
- Also see the ATLAS SUSY talks by E. Romero Adam (inclusive searches), P. Pani (direct 3rd gen.) and C. Deluca (gluino-mediated 3rd gen.), as well as M. King (R-parity violating signatures) in the EW session later this afternoon

Fake E_T^{miss}: jet smearing

- Jets can be mis-measured, introducing large fake E_T^{miss}
- Relevant for multijet processes and Z->II (high cross-section, no real ET^{miss})
- Not enough high E_T^{miss} events to constrain background, aim to generate such events from ones at low E_T^{miss}
- Derive a jet response function using MC

$$R = \frac{p_{\rm T}(\rm reco)}{p_{\rm T}(\rm true)}$$

- The tail in this response function comes from mis-measured jets (mercedes events)
- Corrected using in-situ measurements of QCD dijets and multijets samples
- With the response function, smear jets with low E_T^{miss} in real data
- Obtain events with a large fake E_T^{miss}
- Validate this estimation in a dedicated control region

ATLAS-CONF-2012-109 DIS 2013, Marseille, 23/4/2013

Fake E_T^{miss}: templates

E_T^{miss} is dominated by jet-mismeasurement

- $E_{
 m T}^{
 m miss}/\sqrt{H_{
 m T}}$ shape does not depend on jet multiplicity
- Take a template of $E_{
 m T}^{
 m miss}/\sqrt{H_{
 m T}}$ at low E $_{
 m T}$
- Reweigh data at high Er^{miss} using this template:

$$N_{\mathrm{N_{jet}} \ge j}^{\mathrm{SR}} = N_{\mathrm{N_{jet}} \ge j}^{\mathrm{CR}} \frac{N_{\mathrm{N_{jet}}}^{\mathrm{SR}}}{N_{\mathrm{N_{jet}}}^{\mathrm{CR}}}$$

- Method can be validated using:
 - variations in shape at lower jet multiplicities than those used in the SRs

$$\bullet$$
 at low $E_{
m T}^{
m miss}/\sqrt{H_{
m T}}$ in the SRs

 $H_{\rm T} =$

ATLAS-CONF-2012-103 DIS 2013, Marseille, 23/4/2013

Fake leptons: matrix method

- Fake leptons can arise **from non-prompt** leptons and photon conversion
- General approach is **based on loose/tight** matrix method
- **Define a "loose"** region with preselected leptons and a "tight" region (signal)
- Solve the set of equations $N^{\text{loose}} = N^{\text{loose}}_{\text{real}} + N^{\text{loose}}_{fake}$ $N^{\text{tight}} = \varepsilon_{\text{real}} N^{\text{loose}}_{\text{real}} + \varepsilon_{\text{fake}} N^{\text{loose}}_{\text{fake}}$ The number of fake leptons is

 $\varepsilon_{\mathrm{fake}}$

thus given by

> $N^{ ext{tight}}$ fake $\varepsilon_{\rm real} - \varepsilon_{\rm fake}$

Count how many

real

 N^{tight}

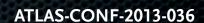
Data / SM

Events / 50 GeV

 10^{3}

102

10


10

1.5

0

50

100

150

200

250

E^{miss}_T [GeV]

300

ATLAS Preliminary

L dt = 20.7fb⁻¹ \s = 8TeV

SR1noZ

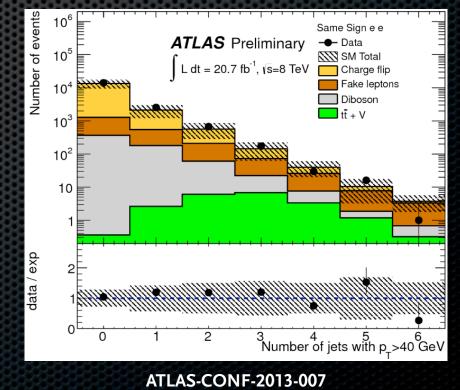
Total SM

ΖZ

tīZ

Higgs ZWW

Reducible Bka

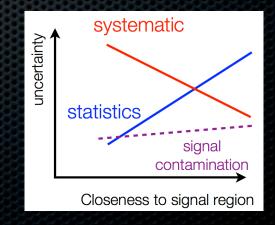

Wino $\lambda_{133} \neq 0$ (300,200) Gluino $\lambda_{133} \neq 0$ (800,400)

For 1 lepton, but can easily be extended to include more

Charge misidentification

- Relevant for the 2-lepton same-sign analysis
- Negligible for muons, only applies to electrons
- Possible since charge is measured in inner detector, and energy in calorimeter
- Due to hard photon bremsstrahlung, followed by a conversion
- The "charge flip" rate is estimated in a Drell-Yan control sample
- Applied in data with the same selections as the SRs, except that the leading two leptons are required to have opposite sign charges
- Flip rate extracted using "aided" tag and probe (tag from barrel, |η|<1.37)
- In each bin in of eta and p_T :

Irreducible backgrounds


- Use a semi-data-driven estimate, or pure MC samples
- Normalise MC in control regions for the dominant background: e.g. ttbar, W, Z for the o-lepton inclusive search
- Pure MC for minor backgrounds or ones too similar to signal (such as WW, or ttbar+V)

Semi-data-driven estimate

ATLAS-CONF-2012-109

CR	SR Background	CR process	CR selection
CRY	Ζ(-> νν) + jets	γ + jets	Isolated photon
CRQ	QCD jets	QCD jets	Reversed ΔΦ(j _i ,E _T ^{miss}) and E _T ^{miss} /m _{eff} cuts
ıl CRW	₩(-> lv) + jets	W(-> Iv) + jets	ı lepton, b-veto, 30 GeV < m⊤(l,E⊤ ^{miss}) < 100 GeV
ıl CRT	ttbar and single-t	ttbar->bbqq'l∨	ı lepton, b-tag, 30 GeV < m⊤(l,E⊤ ^{miss}) < 100 GeV

- Example from o-lepton inclusive search
- Control regions are used to each constrain one particular SM process
- Every SR has 4 CRs that follow the cuts for that
 SR as close as possible
- Dedicated validation regions with low signal contamination to test the MC prediction

Fitting irreducible backgrounds

Likelihood given by the product of Poisson distributions in all the control regions and the signal region, and a term constraining all systematics:

 $L(\mathbf{n}|\mu, \mathbf{s}, \mathbf{b}, \theta) = P_{\text{SR}} \times P_{\text{CRW}} \times P_{\text{CRT}} \times P_{\text{CRY}} \times P_{\text{CRQ}} \times C_{\text{cyst}}$

- Poisson distribution determined by expected number of events λ_i and observed number of events ni
- The expected number of events depends on the expected signal, the expected background, a fully free signal scale parameter and nuisance parameters $W, Z, t\bar{t}, QCD$

 $\lambda_i(\boldsymbol{\mu}, s_i, \mathbf{b}, \boldsymbol{\theta}) = s_i(\boldsymbol{\theta}) \cdot \boldsymbol{\mu}_s + \sum b_{i,j}(\boldsymbol{\theta}) \cdot \boldsymbol{\mu}_j + b_i^{single-t}(\boldsymbol{\theta}) + b_i^{VV}(\boldsymbol{\theta})$

Assuming the shape of the distribution does not change from a control region to a signal region, the number of events is given by

 $N(\text{SR, scaled}) = N(\text{CR, obs}) \times \left[\frac{N(\text{SR, unscaled})}{N(\text{CR, unscaled})}\right]$

The systematics considered to estimate the error made extrapolating are both theoretical (scale dependence, generator modelling, ISR) and experimental Geert-Jan Beles (Nilmegen/Nikher) errors (see backup) DIS 2013, Marseille, 23/4/2013

Reweighting

- In certain analyses (e.g. 1-lepton stop search), some MC
 backgrounds can be found to be too hard compared to data
- Alternative generators are used, spectra are checked to identify the issue (e.g. Sherpa overestimating high p_T for W+jets)
- Derive reweighting factors for several subsets of the background (e.g. categories for various types of W decays coming from ttbar)
- Apply these factors to the Monte Carlo after the fit to match data

ATLAS $Ldt = 4.7 \text{ fb}^{-1}$ Data 2011 (1s=7 TeV ATLAS $1 dt = 4.7 fb^{-1}$ Data 2011 ((s=7 Te)) 450 50 p² [GeV] 250 300 350 400 400 450 Z рт ATLAS ATLAS 00 10 10² 10 SM 400 450 500 350 400 450 500 250 150 200 250 300 E^{miss} [GeV] E_T^{miss} [GeV]

From 2011 1-2 leptons + >=2-4 jets + ET^{miss} arXiv:1208.4688

W E_Tmiss

Conclusions

- Have shown how to estimate SM backgrounds to SUSY analyses
- We discriminate between irreducible and reducible backgrounds
- Reducible backgrounds are treated using dedicated methods
- These can be validated through validation regions and closure tests
- Irreducible backgrounds are dominant backgrounds in the signal region
- Such backgrounds are fitted in dedicated control regions
- Or taken from pure MC, if they are small and/or too signal-like
- (Un?) fortunately, all our data is described well by the Standard Model

Uncertainties

Experimental uncertainties

- Trigger efficiency
- Jet energy scale and resolution
- Lepton energy scale and efficiency
- E_T^{miss} soft component
- b-tagging
- Luminosity
- pileup modelling

Theory uncertainties

- Generator modelling (μ_F,μ_R, ME/PS matching, α_s scale choice when possible; otherwise compare generators)
- Parton shower uncertainties (typically compare Pythia and Herwig)
- PDF choice