Evidence for single top quark production at DØ

Yann Coadou

CERN
(formerly at Simon Fraser University)

EP Seminar, CERN
30 July 2007
Located outside Chicago, Illinois

The world’s highest-energy accelerator

$\bar{p}p$ collider, centre-of-mass energy 1.96 TeV

Run I: 1992-1996 at 1.8 TeV

Started operating for Run II in March 2001

Upgraded for Run II
- 396 ns bunch spacing
- new Main Injector and Recycler
 ⇒ increased antiproton intensity

Peak luminosity
\[> 2.5 \cdot 10^{32} \text{ cm}^{-2}\text{s}^{-1} \]
The DØ detector upgrade

- 2 T superconducting solenoid
- silicon detector
- fiber tracker
- preshower detector
- upgraded muon system
- new calorimeter electronics
- upgraded trigger and DAQ

Yann Coadou (CERN) — Evidence for single top quark production at DØ

EP Seminar, CERN 30 July 2007
The collaboration

- 600+ physicists, 89 institutes, 18 countries

The DØ Collaboration
Top quark physics

- Top quark discovered in 1995 by CDF and DØ at the Tevatron
- Heaviest of all fermions
- Couples strongly to Higgs boson
- So far only observed in pairs, only at the Tevatron

Decay mode and Branching fractions
- Rare decays
- Anomalous decays
- CKM matrix element $|V_{tb}|$

Top spin polarization
- Spin correlations

Production cross-section
- Production kinematics
- New Resonance production

Top mass

W helicity

©B.Vachon
Single top quark production

- Never observed before: electroweak production

s-channel (tb)

- $\sigma_{NLO} = 0.88 \pm 0.11$ pb (*)
- Previous limits (95% C.L.):
 - Run II DØ: < 5.0 pb (370 pb$^{-1}$)
 - Run II CDF: < 3.1 pb (700 pb$^{-1}$)

t-channel (tqb)

- $\sigma_{NLO} = 1.98 \pm 0.25$ pb(*)
- Previous limits (95% C.L.):
 - Run II DØ: < 4.4 pb (370 pb$^{-1}$)
 - Run II CDF: < 3.2 pb (700 pb$^{-1}$)

Why do we care? — $|V_{tb}|$

- Has never been observed before!
- Should happen in SM
- The value of the cross section is a SM test and the first measurement of $|V_{tb}|$

Direct access to $|V_{tb}|$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- In SM: top must decay to a W and d, s, or b quark
 - $V_{td}^2 + V_{ts}^2 + V_{tb}^2 = 1$
 - constraints on V_{td} and V_{ts}:
 - $|V_{tb}| = 0.9991^{+0.00034}_{-0.00004}$

- New physics:
 - $V_{td}^2 + V_{ts}^2 + V_{tb}^2 < 1$
 - no constraint on V_{tb}
 - e.g. 4th generation:
 - $0.07 < |V_{tb}| < 0.9993$
Why do we care? — New physics

- s and t cross sections differently sensitive to new physics

s-channel: charged resonances

- heavy W' boson in topflavour model (separate interaction for 3rd family)
- charged Higgs boson H^\pm in models with extra Higgs doublets (e.g. MSSM)
- charged top pion in topcolor-assisted technicolor
- 4th generation (reduced cross section from $|V_{tb}| < 1$)
- Kaluza-Klein excited W_{KK}, etc...

t-channel: new interactions

- flavour-changing neutral currents ($t-Z/\gamma/g-c$ and/or $t-Z/\gamma/g-u$ couplings)
- 4th generation (potentially strong enhancement from large V_{ts})
Why do we care? — Spin, Higgs, analysis techniques

Top quark spin
- Large mass \Rightarrow top quark decays before it can hadronize (no top jets)
- First chance to study a bare quark!
- Top polarization reflected in angular distributions of decay products
- SM predicts high degree of left-handed tops \Rightarrow possible sign of new physics, or help pin down what new physics

Higgs searches
- Important background to WH associated Higgs production
- As soon as we discover it, somebody will try to get rid of it....

Advanced analysis techniques
- Test of techniques to extract small signal out of large background
- If tools don’t work for single top, forget about the Higgs and other small signals
- If tools don’t work at Tevatron, not much hope for LHC
It has been challenging for years...

- Several publications since Run I by DØ and CDF
- 7 DØ and 6 CDF PhDs (Dec '06)
- $\sigma_{t\bar{t}}$ only $\sim 2 \times \sigma_{\text{singletop}}$, but has striking signature

Total inelastic

<table>
<thead>
<tr>
<th>Cross section (barns)</th>
<th>mb</th>
<th>$b\bar{b}$</th>
<th>μb</th>
<th>W</th>
<th>nb</th>
<th>Z</th>
<th>$t\bar{t}$</th>
<th>pb</th>
<th>single top</th>
<th>Higgs (ZH + WH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-2}</td>
<td></td>
<td></td>
<td>$1 \cdot 10^7$</td>
<td></td>
<td></td>
<td>$6,000$</td>
<td></td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-4}</td>
<td></td>
<td></td>
<td></td>
<td>$2 \cdot 10^{10}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2 \equiv 1$</td>
<td></td>
</tr>
<tr>
<td>10^{-6}</td>
<td></td>
<td></td>
<td>$1 \cdot 10^7$</td>
<td></td>
<td></td>
<td>$6,000$</td>
<td></td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-8}</td>
<td></td>
<td></td>
<td></td>
<td>$2 \cdot 10^{10}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2 \equiv 1$</td>
<td></td>
</tr>
<tr>
<td>10^{-10}</td>
<td></td>
<td></td>
<td>$1 \cdot 10^7$</td>
<td></td>
<td></td>
<td>$6,000$</td>
<td></td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-12}</td>
<td></td>
<td></td>
<td></td>
<td>$2 \cdot 10^{10}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2 \equiv 1$</td>
<td></td>
</tr>
<tr>
<td>10^{-14}</td>
<td></td>
<td></td>
<td>$1 \cdot 10^7$</td>
<td></td>
<td></td>
<td>$6,000$</td>
<td></td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-16}</td>
<td></td>
<td></td>
<td></td>
<td>$2 \cdot 10^{10}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2 \equiv 1$</td>
<td></td>
</tr>
</tbody>
</table>
Event selection

Signature
- isolated lepton
- \mathbf{E}_T
- jets
- at least 1 b-jet

Event selection

- Only one tight (no loose) lepton
 - electron: $p_T > 15$ GeV, $|\eta_{det}| < 1.1$
 - muon: $p_T > 18$ GeV, $|\eta_{det}| < 2$
- $15 < \mathbf{E}_T < 200$ GeV
- 2-4 jets: $p_T > 15$ GeV, $|\eta| < 3.4$
 - Leading jet: $p_T > 25$ GeV, $|\eta_{det}| < 2.5$
 - Second leading jet: $p_T > 20$ GeV
- Mis-reconstructed events: require \mathbf{E}_T direction not aligned or anti-aligned in azimuth with lepton or jet
- One or two b-tagged jets
Signal and backgrounds

Single top signal (m_t = 175 GeV)
- CompHEP-SingleTop + Pythia

W+jets
- Most difficult background
- Alpgen+Pythia (MLM matching between matrix elements and parton shower)
- Heavy flavour fraction and normalization from data

t\bar{t} (m_t = 175 GeV)
- Alpgen+Pythia (MLM)
- Normalized to \(\sigma_{NNLO} = 6.8 \text{ pb}\)

Multijet events
- misidentified lepton, from data
Event selection — Agreement before b tagging

- Normalize $W+\text{jets}$ and multijet to data before b tagging
- Checked 90 variables, 4 jet multiplicities, electron + muon
- Good description of data

Yann Coadou (CERN) — Evidence for single top quark production at DØ
EP Seminar, CERN 30 July 2007
b-jet tagger

- NN trained on 7 input variables from existing taggers.
 - secondary vertices
 - impact parameter
- Much improved performance:
 - fake rate reduced by 1/3 for same b efficiency relative to previous tagger
 - smaller systematic uncertainties
- Tag Rate Functions (TRFs) in η, p_T, z-PV applied to MC
- Operating point:
 - b-jet efficiency $\sim 50\%$
 - c-jet efficiency $\sim 10\%$
 - light jet efficiency $\sim 0.5\%$
Percentage of single top $tb+tqb$ selected events and S:B ratio

(white squares = no plans to analyze)

<table>
<thead>
<tr>
<th>Electron + Muon</th>
<th>1 jet</th>
<th>2 jets</th>
<th>3 jets</th>
<th>4 jets</th>
<th>≥ 5 jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 tags</td>
<td>10%</td>
<td>25%</td>
<td>12%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>1:3200</td>
<td>1:390</td>
<td>1:300</td>
<td>1:270</td>
<td>1:230</td>
</tr>
<tr>
<td>1 tag</td>
<td>6%</td>
<td>21%</td>
<td>11%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>1:100</td>
<td>1:20</td>
<td>1:25</td>
<td>1:40</td>
<td>1:53</td>
</tr>
<tr>
<td>2 tags</td>
<td>3%</td>
<td>2%</td>
<td>1%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>1:11</td>
<td>1:15</td>
<td>1:38</td>
<td>1:43</td>
<td></td>
</tr>
</tbody>
</table>
Systematic uncertainties

- Assigned per background, jet multiplicity, lepton flavour and number of tags
- Uncertainties that affect both normalisation and shapes: jet energy scale and tag rate functions (b-tagging parameterisation)
- All uncertainties sampled during limit-setting phase

Relative systematic uncertainties

<table>
<thead>
<tr>
<th>Component</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$ cross section</td>
<td>18%</td>
</tr>
<tr>
<td>Luminosity</td>
<td>6%</td>
</tr>
<tr>
<td>Electron trigger</td>
<td>3%</td>
</tr>
<tr>
<td>Muon trigger</td>
<td>6%</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>wide range</td>
</tr>
<tr>
<td>Jet efficiency</td>
<td>2%</td>
</tr>
<tr>
<td>Jet fragmentation</td>
<td>5–7%</td>
</tr>
<tr>
<td>Heavy flavor ratio</td>
<td>30%</td>
</tr>
<tr>
<td>Tag-rate functions</td>
<td>2–16%</td>
</tr>
<tr>
<td>Primary vertex</td>
<td>3%</td>
</tr>
<tr>
<td>e reco * ID</td>
<td>2%</td>
</tr>
<tr>
<td>e trackmatch & likelihood</td>
<td>5%</td>
</tr>
<tr>
<td>μ reco * ID</td>
<td>7%</td>
</tr>
<tr>
<td>μ trackmatch & isolation</td>
<td>2%</td>
</tr>
<tr>
<td>$\varepsilon_{\text{real} - e}$</td>
<td>2%</td>
</tr>
<tr>
<td>$\varepsilon_{\text{real} - \mu}$</td>
<td>2%</td>
</tr>
<tr>
<td>$\varepsilon_{\text{fake} - e}$</td>
<td>3–40%</td>
</tr>
<tr>
<td>$\varepsilon_{\text{fake} - \mu}$</td>
<td>2–15%</td>
</tr>
</tbody>
</table>
Agreement after tagging

![Graph showing yield versus missing transverse energy with data and signal predictions.]

<table>
<thead>
<tr>
<th>Sample</th>
<th># of Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>s&t-channel Signal</td>
<td>62</td>
</tr>
<tr>
<td>Wjj</td>
<td>174</td>
</tr>
<tr>
<td>tt→l+jets</td>
<td>266</td>
</tr>
<tr>
<td>Wbb & Wcc</td>
<td>675</td>
</tr>
<tr>
<td>Mis-ID’s leptons</td>
<td>201</td>
</tr>
<tr>
<td>Diboson,tt→ dileptons</td>
<td>82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Totals</th>
<th>2 Jets</th>
<th>3 Jets</th>
<th>4 Jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>697</td>
<td>455</td>
<td>246</td>
</tr>
<tr>
<td>Total Background</td>
<td>685</td>
<td>460</td>
<td>253</td>
</tr>
<tr>
<td>Signal</td>
<td>36</td>
<td>20</td>
<td>6</td>
</tr>
</tbody>
</table>
Multivariate analysis techniques

- Boosted decision trees
- Matrix element
- Bayesian neural networks
Decision trees

- Machine-learning technique, widely used in social sciences
- Idea: recover events that fail criteria in cut-based analysis

- Start with all events = first node
 - sort all events by each variable
 - for each variable, find splitting value with best separation between two children (mostly signal in one, mostly background in the other)
 - select variable and splitting value with best separation, produce two branches with corresponding events ((F)ailed and (P)assed cut)
- Repeat recursively on each node
- Splitting stops: terminal node = leaf

- DT output = leaf purity, close to 1 (0) for signal (bkg)

Splitting a node

Impurity $i(t)$
- maximum for equal mix of signal and background
- symmetric in p_{signal} and $p_{background}$
- minimal for node with either signal only or background only
- strictly concave \Rightarrow reward purer nodes

- Decrease of impurity for split s of node t into children t_L and t_R (goodness of split):
 \[\Delta i(s, t) = i(t) - p_L \cdot i(t_L) - p_R \cdot i(t_R) \]
- Aim: find split s^* such that:
 \[\Delta i(s^*, t) = \max_{s \in \{\text{splits}\}} \Delta i(s, t) \]

- Maximizing $\Delta i(s, t) \equiv$ minimizing overall tree impurity

Examples

- **Gini**
 \[Gini = 1 - \sum_{i=s,b} p_i^2 = \frac{2sb}{(s+b)^2} \]

- **Entropy**
 \[entropy = - \sum_{i=s,b} p_i \log p_i \]

\[criterion \]
\[\text{--- Gini} \]
\[\text{--- Entropy} \]
Object Kinematics
\(p_T(jet1) \)
\(p_T(jet2) \)
\(p_T(jet3) \)
\(p_T(jet4) \)
\(p_T(best1) \)
\(p_T(notbest1) \)
\(p_T(false2) \)
\(p_T(tag1) \)
\(p_T(untag1) \)
\(p_T(untag2) \)

Angular Correlations
\(\Delta R(jet1, jet2) \)
\(\cos(best1, lepton)_{besttop} \)
\(\cos(best1, notbest1)_{besttop} \)
\(\cos(tag1, alljets)_{alljets} \)
\(\cos(tag1, lepton)_{btaggedtop} \)
\(\cos(jet1, alljets)_{alljets} \)
\(\cos(jet1, lepton)_{btaggedtop} \)
\(\cos(jet2, alljets)_{alljets} \)
\(\cos(jet2, lepton)_{btaggedtop} \)
\(\cos(lepton, Q(\text{lepton}) \times z)_{besttop} \)
\(\cos(lepton, besttop, besttop)_{CMframe} \)
\(\cos(lepton, btaggedtop, btaggedtop)_{CMframe} \)
\(\cos(notbest, alljets)_{alljets} \)
\(\cos(notbest, lepton)_{besttop} \)
\(\cos(untag1, alljets)_{alljets} \)
\(\cos(untag1, lepton)_{btaggedtop} \)

Event Kinematics
Aplanarity(alljets, \(W \))
\(M(W, best1) \) ("best" top mass)
\(M(W, tag1) \) ("b-tagged" top mass)
\(H_T(alljets) \)
\(H_T(alljets, jet1, jet2) \)
\(H_T(alljets, tag1) \)
\(H_T(alljets, W) \)
\(H_T(alljets, jet1, jet2, W) \)
\(M(alljets, W) \)
\(M(alljets, best1) \)
\(M(alljets, tag1) \)
\(M(jet1, jet2) \)
\(M(jet1, jet2, W) \)
\(M_T(jet1, jet2) \)
\(M_T(W) \)
Missing \(E_T \)
\(p_T(alljets, jet1, jet2) \)
\(p_T(alljets, tag1) \)
\(p_T(alljets, W) \)
\(Q(\text{lepton}) \times \eta(\text{untag1}) \times \sqrt{s} \)
Sphericity(alljets, \(W \))

- Adding variables does not degrade performance
- Tested shorter lists, lost some sensitivity
- Same list used for all channels
Measure and apply

- Take trained tree and run on independent pseudo-data sample, determine purities
- Apply to data
- Should see enhanced separation (signal right, background left)
- Could cut on output and measure, or use whole distribution to measure

Advantages

- DT has human readable structure (no black box)
- Training is fast
- Deals with discrete variables
- No need to transform inputs
- Resistant to irrelevant variables

Limitations

- Instability of tree structure
- Piecewise nature of output
Boosting a decision tree

Boosting
- Recent technique to improve performance of a weak classifier
- Recently used on decision trees by GLAST and MiniBooNE
- Basic principle on DT:
 - Train a tree T_k
 - $T_{k+1} = \text{modify}(T_k)$

AdaBoost algorithm
- Adaptive boosting
- Check which events are misclassified by T_k
- Derive tree weight α_k
- Increase weight of misclassified events by e^{α_k}
- Train again to build T_{k+1}
- Boosted result of event i: $T(i) = \sum_{k=1}^{N_{\text{tree}}} \alpha_k T_k(i)$

- Averaging \Rightarrow dilutes piecewise nature of DT
- Usually improves performance

Decision tree parameters

<table>
<thead>
<tr>
<th>DT choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3 of MC for training</td>
</tr>
<tr>
<td>AdaBoost parameter $\beta = 0.2$</td>
</tr>
<tr>
<td>20 boosting cycles</td>
</tr>
<tr>
<td>Signal leaf if purity > 0.5</td>
</tr>
<tr>
<td>Minimum leaf size $= 100$ events</td>
</tr>
<tr>
<td>Same total weight to signal and background to start</td>
</tr>
<tr>
<td>Goodness of split - Gini factor</td>
</tr>
</tbody>
</table>

Analysis strategy

- Train 36 separate trees:
 - 3 signals ($s,t,s + t$)
 - 2 leptons (e,μ)
 - 3 jet multiplicities (2,3,4 jets)
 - 2 b-tag multiplicities (1,2 tags)
- For each signal train against the sum of backgrounds
Matrix element method

- Pioneered by DØ top mass analysis. Now used in search
- Use the 4-vectors of all reconstructed leptons and jets
- Use matrix elements of main signal and bkgd diagrams to compute event probability density for signal and bkgd hypotheses
- Goal: calculate a discriminant:

\[D_s(\vec{x}) = P(S|\vec{x}) = \frac{P_{\text{signal}}(\vec{x})}{P_{\text{signal}}(\vec{x}) + P_{\text{bkg}}(\vec{x})} \]

- Encoded in normalized differential cross section for process S:

\[P_S(\vec{x}) = \frac{1}{\sigma_S} d\sigma_S(\vec{x}), \quad \sigma_S = \int d\sigma_S(\vec{x}) \]

Used only limited number of Feynman diagrams

- Sensitivity would increase (but so does computation time) if more diagrams were included. In particular, no \(t\bar{t} \) diagrams are computed (serious limitation for \(>2 \) jets)
Bayesian neural networks

A different sort of neural network

- Instead of choosing one set of weights, find posterior probability density over all possible weights
- Averaging over many networks weighted by the probability of each network given the training data
- Used 25 variables (subset of DT variables)
- Same strategy as DT: 36 different BNN

Advantages
- Less prone to overtraining
- Details of each network not important

Limitation
- Darker black box
- Computationally demanding

Implementation: Flexible Bayesian Modeling (FBM) package
http://www.cs.toronto.edu/~radford/fbm.software.html
Analysis validation

Ensemble testing
- Test the whole machinery with many sets of pseudo-data
- Like running DØ experiment 1000s of times
- Generated ensembles with different signal contents (no signal, SM, other cross sections, higher luminosity)

Ensemble generation
- Pool of weighted signal + background events
- Fluctuate relative and total yields in proportion to systematic errors, reproducing correlations
- Randomly sample from a Poisson distribution about the total yield to simulate statistical fluctuations
- Generate pseudo-data set, pass through full analysis chain (including systematic uncertainties)

All analyses achieved linear response to varying input cross sections and negligible bias
Cross-check samples

- Validate methods on data in no-signal region
- \(W+\text{jets} \): 2 jets, \(H_T(\text{lepton}, \slash E_T, \text{all jets}) < 175 \text{ GeV} \)
- \(\text{ttbar} \): 4 jets, \(H_T(\text{lepton}, \slash E_T, \text{all jets}) > 300 \text{ GeV} \)
- Good agreement
Use the 0-signal ensemble

Expected p-value
Fraction of 0-signal pseudo-datasets in which we measure at least 2.9 pb (SM single top cross section)

Observed p-value
Fraction of 0-signal pseudo-datasets in which we measure at least the observed cross section.

Also use the SM ensemble to check compatibility of observed result with SM prediction
Expected sensitivity $s+t$

Decision trees

p-value 1.9% (2.1σ)

Matrix elements

p-value 3.7% (1.8σ)

Bayesian NN

p-value 9.7% (1.3σ)
Matrix element

\[\sigma = 4.6^{+1.8}_{-1.5} \text{ pb} \]
\[\text{p-value} = 0.21\% \ (2.9 \sigma) \]
\[\text{SM compatibility 21\%} \]

Bayesian NN

\[\sigma = 5.0 \pm 1.9 \text{ pb} \]
\[\text{p-value} = 0.89\% \ (2.4 \sigma) \]
\[\text{SM compatibility 18\%} \]

New preliminary ME result

- Included \(t\bar{t} \rightarrow \ell + \text{jets} \) ME in 3-jet discriminant

\[\sigma = 4.8^{+1.6}_{-1.4} \text{ pb} \]
\[\text{exp. p-value} = 3.1\% \ (1.9 \sigma) \]
\[\text{obs. p-value} = 0.082\% \ (3.2 \sigma) \]

New preliminary BNN result

- Better treatment of noisy training data

\[\sigma = 4.4^{+1.6}_{-1.4} \text{ pb} \]
\[\text{exp. p-value} = 1.6\% \ (2.2 \sigma) \]
\[\text{obs. p-value} = 0.083\% \ (3.1 \sigma) \]

ME discriminant output, with and without signal content (all channels combined)
Boosted decision tree observed results

\[\sigma_{s+t} = 4.9 \pm 1.4 \text{ pb} \]

p-value = 0.035% (3.4\(\sigma\))

SM compatibility: 11% (1.3\(\sigma\))

Evidence for single top production!

\[\sigma_s = 1.0 \pm 0.9 \text{ pb} \]

\[\sigma_t = 4.2^{+1.8}_{-1.4} \text{ pb} \]
Boosted decision tree event characteristics

$DT < 0.3$

$DT > 0.55$

$DT > 0.65$

Yann Coadou (CERN) — Evidence for single top quark production at DØ

EP Seminar, CERN 30 July 2007
Now that we have a cross section measurement, we can make the first direct measurement of $|V_{tb}|$

Use the same infrastructure as for cross section measurement but make a posterior in $|V_{tb}|^2$

Additional theoretical errors (hep-ph/0408049)

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>top mass</td>
<td>13%</td>
<td>8.5%</td>
</tr>
<tr>
<td>scale</td>
<td>5.4%</td>
<td>4.0%</td>
</tr>
<tr>
<td>PDF</td>
<td>4.3%</td>
<td>10.0%</td>
</tr>
<tr>
<td>α_s</td>
<td>1.4%</td>
<td>0.01%</td>
</tr>
</tbody>
</table>

Most general Wtb coupling ($P_{L,R} = (1 \mp \gamma_5)/2$):

$$\Gamma_{tbW}^\mu = -\frac{g}{\sqrt{2}} V_{tb} \bar{u}(p_b) \left[\gamma^\mu (f_1^L P_L + f_1^R P_R) - \frac{i \sigma_{\mu\nu}}{M_W} (f_2^L P_L + f_2^R P_R) \right] u(p_t)$$

SM: $f_1^L = 1$, $f_1^R = 0$ (pure $V-A$), $f_2^L = f_2^R = 0$ (CP conservation)

Effectively measuring strength of $V-A$ coupling $|V_{tb}f_1^L|$, can be > 1
First direct measurement of $|V_{tb}|$

- Assuming $V_{td}^2 + V_{ts}^2 \ll V_{tb}^2$ and pure $V-A$ and CP-conserving Wtb interaction

\[|V_{tb}f_1^L| = 1.3 \pm 0.2 \]

\[0.68 < |V_{tb}| \leq 1 \text{ @ 95\% CL} \]

(assuming $f_1^L = 1$, flat prior in $[0,1]$)

- No assumption about number of quark families or CKM matrix unitarity
New: combination of s+t analyses

Correlations

- 3 analyses with similar performance on same dataset
- Combined using BLUE method

<table>
<thead>
<tr>
<th></th>
<th>DT</th>
<th>ME</th>
<th>BNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT</td>
<td>100%</td>
<td>64%</td>
<td>66%</td>
</tr>
<tr>
<td>ME</td>
<td>100%</td>
<td>59%</td>
<td></td>
</tr>
<tr>
<td>BNN</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DØ Run II

* = preliminary

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Cross Section [pb]</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision Trees</td>
<td>4.9 ±1.4</td>
<td>3.4σ</td>
</tr>
<tr>
<td>Matrix Elements*</td>
<td>4.8 ±1.6</td>
<td>3.2σ</td>
</tr>
<tr>
<td>Bayesian NNs*</td>
<td>4.4 ±1.6</td>
<td>3.1σ</td>
</tr>
<tr>
<td>Combination*</td>
<td>4.7 ±1.3</td>
<td>3.6σ</td>
</tr>
</tbody>
</table>
Conclusion

First evidence for single top quark production (DØ decision trees)

\[\sigma(p\bar{p} \rightarrow tb + X, tqb + X) = 4.9 \pm 1.4 \text{ pb} \]

3.4\(\sigma \) significance

First direct measurement of \(|V_{tb}| \) (DØ decision trees)

\[|V_{tb}f_1^L| = 1.3 \pm 0.2 \]

assuming \(f_1^L = 1 \): \[0.68 < |V_{tb}| \leq 1 \atop 95\% \text{ CL} \]

(Always assuming \(V_{td}^2 + V_{ts}^2 \ll V_{tb}^2 \) and pure \(V-A \) and CP-conserving \(Wtb \) interaction)

New preliminary combination of DT, ME and BNN

\[\sigma(p\bar{p} \rightarrow tb + X, tqb + X) = 4.7 \pm 1.3 \text{ pb} \]

3.6\(\sigma \) significance

- A lot more data already at hand
Single top prospects — Tevatron and LHC

Tevatron
- By 2009 we should have observed single top production and measured its cross section to 15-20%.
- $|V_{tb}|$ is then known to $\sim 10\%$

LHC
- Much larger production rates:
 - $\sigma_{s}^{t/\bar{t}} = 6.6/4.1 \text{ pb (}\pm 10\%)$
 - $\sigma_{t}^{t/\bar{t}} = 156/91 \text{ pb (}\pm 5\%)$
 - $\sigma_{tW}^{t/\bar{t}} = 34/34 \text{ pb (}\pm 10\%)$
- Try to observe all three channels (s-channel challenging)
- $|V_{tb}|$ measured to percent level
- Large samples \Rightarrow study properties
More information:
http://www-d0.fnal.gov/Run2Physics/top/public/fall06/singletop