Total, elastic and diffractive cross-sections with TOTEM

Jan Kašpar
on behalf of the TOTEM collaboration

MPI@LHC 2012, CERN, 4 December, 2012
TOTEM physics programme

Elastic scattering

Total cross-section

Soft and hard diffraction
part I

Elastic scattering and Total cross-section
Three methods for total cross-section

elastic observables only:

\[\sigma_{tot}^2 = \frac{16\pi}{1 + \varrho^2} \frac{1}{\mathcal{L}} \left(\frac{dN_{el}}{dt} \right)_0 \]

\(\varrho \)-independent:

\[\sigma_{tot} = \frac{1}{\mathcal{L}} \left(N_{el} + N_{inel} \right) \]

luminosity-independent:

\[\sigma_{tot} = \frac{16\pi}{1 + \varrho^2} \frac{dN_{el}/dt}{N_{el} + N_{inel}} \]

\begin{itemize}
 \item elastic rate
 \(\Rightarrow \) Roman Pot detectors
 \item inelastic rate
 \(\Rightarrow \) telescopes T1 and T2
 \item luminosity
 \(\Rightarrow \) provided by CMS
 \item \(\varrho \equiv \frac{\text{Re} A_{el}}{\text{Im} A_{el}} \bigg|_{t=0} \)
 \(\Rightarrow \) from COMPETE extrapolation
\end{itemize}

ingredients
Detector apparatus

- telescopes T1 and T2 charged particles from inelastic collisions
 - T1: $3.1 < |\eta| < 4.7$
 - T2: $5.3 < |\eta| < 6.5$

- Roman Pots at the LHC elastic and diffractive protons

- all detectors symmetrically on both sides of IP5
- all detectors trigger-capable
Proton measurement with Roman Pots

LHC magnet lattice ⇒ accelerator optics

\[x(RP) = (\text{effective length } L_x) \cdot (\text{scattering angle } \theta_x^*) + (\text{magnification } v_x) \cdot (\text{vertex } x^*) + (\text{dispersion } D_x) \cdot (\text{rel. momentum loss } \xi \equiv \Delta p/p) \]

- optics defines what and how can be observed:

the same sample of elastic events seen with different optics:

- this presentation: optics \(\beta^* = 90 \text{ m} \) used (almost) everywhere
Elastic scattering measurement

1. Kinematics reconstruction
 - proton tracks in RPs $\xrightarrow{\text{inverse optics}}$ proton kinematics at IP

2. Elastic tagging
 - elastic event = 2 anti-collinear protons from the same vertex \Rightarrow compare left and right reconstructed protons
 - each proton $\xi \approx 0 \Rightarrow$ correlation hit position vs. track angle at RPs

3. Acceptance corrections
 - RP sensors have finite size, LHC apertures
 - azimuthal symmetry \Rightarrow geometrical correction (+ smearing around edges)

4. Unfolding of resolution effects
 - angular resolution from data (compare left and right protons)
 - Monte Carlo \Rightarrow impact on t-distribution

5. Inefficiency corrections
 - uncorrelated one-RP inefficiencies
 - near-far correlated RP inefficiencies
 - “pile-up” = elastic event + another track in a RP

6. Luminosity
 - from CMS (if available), uncertainty $\approx 4\%$
Elastic scattering results

√s = 7 TeV

√s = 8 TeV

Fit/extrapolation: \(e^{-B|t|} \)
\(B = (19.9 \pm 0.3) \text{ GeV}^2 \)

CMS luminosity unavailable
Total cross-section results

inelastic rate measurement: see Giuseppe Latino’s talk (on Monday)

\[\sqrt{s} = 7 \text{ TeV} \]
[CERN-PH-EP-2012-353]

elastic observables only:

\[\sigma_{\text{tot}} = \frac{16\pi}{1 + \varrho^2} \frac{1}{\mathcal{L}} \left. \frac{dN_{\text{el}}}{dt} \right|_0 \]

\[\sigma_{\text{tot}} = (98.6 \pm 2.3) \text{ mb} \]

\(\varrho \)-independent:

\[\sigma_{\text{tot}} = \frac{1}{\mathcal{L}} (N_{\text{el}} + N_{\text{inel}}) \]

\[\sigma_{\text{tot}} = (99.1 \pm 4.4) \text{ mb} \]

\(\mathcal{L} \)-independent:

\[\sigma_{\text{tot}} = \frac{16\pi}{1 + \varrho^2} \frac{1}{N_{\text{el}} + N_{\text{inel}}} \left. \frac{dN_{\text{el}}}{dt} \right|_0 \]

\[\sigma_{\text{tot}} = (98.1 \pm 2.4) \text{ mb} \]

\[\sqrt{s} = 8 \text{ TeV} \]

elastic observables only:

\[\sigma_{\text{tot}} = \frac{16\pi}{1 + \varrho^2} \frac{1}{\mathcal{L}} \left. \frac{dN_{\text{el}}}{dt} \right|_0 \]

\[\sigma_{\text{tot}} = (101.7 \pm 2.9) \text{ mb} \]

\(\varrho \)-independent:

\[\sigma_{\text{tot}} = \frac{1}{\mathcal{L}} (N_{\text{el}} + N_{\text{inel}}) \]

\[\sigma_{\text{tot}} = (101.7 \pm 2.9) \text{ mb} \]

(CMS luminosity unavailable)
TOTEM results in context

- outlook: successful data-taking with $\beta^* = 1000$ m optics – goal: ϱ determination
part II

Diffraction

double-pomeron exchange (DPE)
 (central production)

single diffraction (SD)

double diffraction (DD)
Optics for diffractive studies

$\beta^* = 90\, \text{m}$

- optical functions at RP 220:
 $L_x \approx 0, \quad L_y \approx 260\, \text{m}, \quad D_x \approx 4\, \text{cm}$
 ↓
 diffractive protons in **vertical RPs**
 (a DPE sample)

- $|\xi|_{\text{min}} = 0\% \Rightarrow \text{low masses}$
- ξ-resolution
 - RPs only: (0.4 to 1)$\%$ (t-dependent)
 - with CMS vertex: $\approx 2\times$ better

used in 2012

- low β^* (0.7 m here)

- optical functions at RP 220:
 $L_x \approx 1.7\, \text{m}, \quad L_y \approx 14\, \text{m}, \quad D_x \approx 8\, \text{cm}$
 ↓
 diffractive protons in **horizontal RPs**
 (a DPE sample)

- $|\xi|_{\text{min}} = 2.8\% \Rightarrow \text{higher masses}$
- ξ-resolution
 - RPs only: $\approx 0.2\%$

planned after long shutdown
available data
- $\sqrt{s} = 7$ TeV, $\beta^* = 90$ m, TOTEM alone: analysis ongoing
- $\sqrt{s} = 8$ TeV, $\beta^* = 90$ m, TOTEM+CMS: analysis ongoing
 (CMS trigger: di-jets with $p_T > 20$ GeV)

measurement with RPs only
- integrate over all $\xi \Rightarrow$ determine $|t|$-distribution
- extrapolate t-distribution \Rightarrow integrated DPE cross-section

measurement with CMS
- double determination of diffractive-system mass: RPs (both sides!) and CMS
- goals: cross-sections and exceptional-event search
Single diffraction

- available data
 - $\sqrt{s} = 7$ TeV, $\beta^* = 90$ m: analysis ongoing
 - $\sqrt{s} = 8$ TeV, $\beta^* = 90$ m (TOTEM + CMS)

- event topologies \Rightarrow mass classes

<table>
<thead>
<tr>
<th>mass</th>
<th>ξ region</th>
<th>proton side</th>
<th>opposite side</th>
</tr>
</thead>
<tbody>
<tr>
<td>low mass</td>
<td>$\xi < 10^{-6}$</td>
<td>nothing</td>
<td>T2 only</td>
</tr>
<tr>
<td>medium mass</td>
<td>$10^{-6} < \xi < 0.25%$</td>
<td>nothing</td>
<td>T1 and T2</td>
</tr>
<tr>
<td>high mass</td>
<td>$0.25% < \xi < 2.5%$</td>
<td>T1 only</td>
<td>T1 and T2</td>
</tr>
<tr>
<td>very high mass</td>
<td>$\xi < 2.5%$</td>
<td>T1 and T2</td>
<td>T1 and T2</td>
</tr>
</tbody>
</table>

- double measurement of ξ:
 - RPs + optics
 - rapidity gap in T1/T2

- goals: integrated and differential SD cross-sections
Double diffraction

- available data
 - $\sqrt{s} = 7$ TeV, $\beta^* = 90$ m: analysis ongoing
 - $\sqrt{s} = 8$ TeV, $\beta^* = 90$ m

- trigger types
 - T1 and T2: dominated by MB \Rightarrow background estimation
 - T2 but not T1: sensitive to DD

- goals
 - integral cross-section
 - differential cross-section (as function of η_{min})