A MODEL OF DIFFRACTION

Konstantin Goulianos The Rockefeller University

MPI@LHC Workshop on Multi-Parton Interactions at the LHC 3-7 December 2012, CERN

TOPICS

Introduction:
 Diffractive ross sections: soft SD, DD, DPE or CD → multigap diffraction?
 also: total, elastic → total-inelastic
 and: hard dfiffraction
 Final states: pt, multiplicity (track-, total-), particle ID
 Issues: unitarization, factorization-breaking, "gap survival"
 Implementation in PYTHIA8 → talk of Robert Ciesielski in this session

For details of the model see talk and proceedings of: DIFFRACTION 2010 "Diffractive and total *pp* cross sections at the LHC and beyond" (KG) http://link.aip.org/link/doi/10.1063/1.3601406

REMARKS

□ RENORM (renormalization model)

Tested using MBR (Minimum Bias Rockefeller) simulation at CDF

Dffraction derived from inclusive PDFs and QCD color factors.

Absolute normalization!

HADRONIZATION

> MBR produces only π^{\pm} and π^{0} 's using a modified gamma distribution Robert's talk
 PYTHIA8-MBR is an update of PYTHIA8, as of PYTHIA8.165
 MBR distributions with hadronization done by PYTHIA8
 Work in progress: tune PYTHIA8-MBR to reproduce MBR distributions

Total Cross section \rightarrow formula based on a glue-ball-like saturated-exchange.

DIFFRACTION IN QCD

Non-diffractive events

♦ color-exchange → η-gaps exponentially suppressed

Diffractive events

- Colorless vacuum exchange
- \rightarrow η -gaps not exp'ly suppressed

Goal: probe the QCD nature of the diffractive exchange

MPI@LHC, CERN. 3-7 Dec 2012 A Model of Diffraction

DEFINITIONS

DIFFRACTION AT CDF

MPI@LHC, CERN. 3-7 Dec 2012

A Model of Diffraction

Basic and combined diffractive processes

4-gap diffractive process-Snowmass 2001- http://arxiv.org/pdf/hep-ph/0110240

Regge theory – values of $s_0 \& g_{PPP}$?

MPI@LHC, CERN. 3-7 Dec 2012

A Model of Diffraction

A complication ... → Unitarity!

$$\left(\frac{d\sigma_{el}}{dt}\right)_{t=0} \sim \left(\frac{s}{s_o}\right)^{2\epsilon}, \ \sigma_t \sim \left(\frac{s}{s_o}\right)^{\epsilon}, \ \text{and} \ \sigma_{sd} \sim \left(\frac{s}{s_o}\right)^{2\epsilon}$$

σ_{sd} grows faster than σ_t as s increases *
 Junitarity violation at high s
 (similarly for partial x-sections in impact parameter space)

 \Box the unitarity limit is already reached at $\sqrt{s} \sim 2$ TeV !

need unitarization

* similarly for $(d\sigma_{el}/dt)_{t=0}$ vs σ_t , but this is handled differently in RENORM.

MPI@LHC, CERN. 3-7 Dec 2012 A Model of Diffraction

K. Goulianos

KG → CORFU-2001: http://arxiv.org/abs/hep-ph/0203141

$$\begin{aligned} & \begin{array}{c} color \\ factor \\ \kappa = \frac{g_{IP-IP-IP}(t)}{\beta_{IP-p-p}(0)} \approx 0.17 \\ \hline \\ \beta_{IP-p-p}(0) \\ \end{array} \end{aligned}$$
Experimentally:
KG&JM, PRD 59 (114017) 1999
$$\begin{aligned} & \begin{array}{c} \kappa = \frac{g_{IP-IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104 \\ \hline \\ \beta_{IP-p} \\ \end{array} \end{aligned}$$
QCD: $\kappa = f_g \times \frac{1}{N_c^2 - 1} + f_q \times \frac{1}{N_c} - \frac{Q^2 = 1}{N_c} \rightarrow \approx 0.75 \times \frac{1}{8} + 0.25 \times \frac{1}{3} = 0.18 \end{aligned}$

$$\begin{split} \frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} &= \left[\frac{\sigma_{\circ}}{16\pi} \sigma_{\circ}^{I\!Pp}\right] \frac{s^{2\epsilon}}{N(s, s_o)} \frac{e^{bt}}{(M^2)^{1+\epsilon}} \\ b &= b_0 + 2\alpha' \ln \frac{s}{M^2} \qquad s_o^{\text{CMG}} = (3.7 \pm 1.5) \text{ GeV}^2 \\ \overline{N(s, s_o)} &\equiv \int_{\xi_{\min}}^{\xi_{\max}} d\xi \int_{t=0}^{-\infty} dt \, f_{I\!P/p}(\xi, t) \stackrel{s \to \infty}{\to} \sim s_o^{\epsilon} \frac{s^{2\epsilon}}{\ln s} \\ \frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} \stackrel{s \to \infty}{\to} \sim \ln s \, \frac{e^{bt}}{(M^2)^{1+\epsilon}} \\ \overline{\sigma_{sd}} \stackrel{s \to \infty}{\longrightarrow} \sim \frac{\ln s}{b \to \ln s} \Rightarrow const \end{split}$$

MPI@LHC, CERN. 3-7 Dec 2012 A Model of Diffraction

$$\frac{d^{2}\sigma}{dt \ d\Delta y} = N_{gap} \cdot \underbrace{C \cdot F_{p}^{2}(t) \cdot \left\{e^{(\varepsilon + \alpha' t)\Delta y}\right\}^{2}}_{P_{gap}(\Delta y, t)} \cdot \kappa \cdot \left\{\sigma_{o} \ e^{\varepsilon \Delta y'}\right\}$$

$$N_{gap}^{-1}(s) = \int_{\Delta y, t} P_{gap}(\Delta y, t) \ d\Delta y \ dt \xrightarrow{s \to \infty} C' \cdot \frac{s^{2\varepsilon}}{\ln s}$$

$$\frac{d^{2}\sigma}{dt \ d\Delta y} = C'' \left[e^{\varepsilon (\Delta y - \ln s)} \cdot \ln s\right] e^{(b_{0} + 2\alpha' \Delta y)t}$$
grows slower than s^{ε}

$$\Rightarrow$$
 Pumplin bound obeyed at all impact parameters

M² distribution: data → dσ/dM²|_{t=-0.05} ~ independent of s over 6 orders of magnitude!

Independent of S over 6 orders of magnitude in M²
 → M² scaling

 \rightarrow factorization breaks down to ensure M² scaling

Scale so and PPP coupling

Saturation at low Q² and small-x

DD at CDF: comparison with MBR http://physics.rockefeller.edu/publications.html

MPI@LHC, CERN. 3-7 Dec 2012

A Model of Diffraction

Multigap cross sections, e.g. SDD

MPI@LHC, CERN. 3-7 Dec 2012 A Model of Diffraction

DD at CDF

MPI@LHC, CERN. 3-7 Dec 2012

A Model of Diffraction

K. Goulianos

SDD at CDF

CD/DPE at CDF

Difractive x-sections

$$\frac{d^2 \sigma_{SD}}{dt d\Delta y} = \frac{1}{N_{\text{gap}}(s)} \left[\frac{\beta^2(t)}{16\pi} e^{2[\alpha(t)-1]\Delta y} \right] \cdot \left\{ \kappa \beta^2(0) \left(\frac{s'}{s_0} \right)^{\epsilon} \right\},$$

$$\frac{d^3 \sigma_{DD}}{dt d\Delta y dy_0} = \frac{1}{N_{\text{gap}}(s)} \left[\frac{\kappa \beta^2(0)}{16\pi} e^{2[\alpha(t)-1]\Delta y} \right] \cdot \left\{ \kappa \beta^2(0) \left(\frac{s'}{s_0} \right)^{\epsilon} \right\},$$

$$\frac{d^4 \sigma_{DPE}}{dt_1 dt_2 d\Delta y dy_c} = \frac{1}{N_{\text{gap}}(s)} \left[\Pi_i \left[\frac{\beta^2(t_i)}{16\pi} e^{2[\alpha(t_i)-1]\Delta y_i} \right] \right] \cdot \kappa \left\{ \kappa \beta^2(0) \left(\frac{s'}{s_0} \right)^{\epsilon} \right\}$$

$$\beta^2(t) = \beta^2(0)F^2(t)$$

$$F^{2}(t) = \left[\frac{4m_{p}^{2} - 2.8t}{4m_{p}^{2} - t} \left(\frac{1}{1 - \frac{t}{0.71}}\right)^{2}\right]^{2} \approx a_{1}e^{b_{1}t} + a_{2}e^{b_{2}t}$$

 $α_1=0.9, α_2=0.1, b_1=4.6 \text{ GeV}^{-2}, b_2=0.6 \text{ GeV}^{-2}, s'=s e^{-\Delta y}, \kappa=0.17, \\
κβ^2(0)=σ_0, s_0=1 \text{ GeV}^2, σ_0=2.82 \text{ mb or } 7.25 \text{ GeV}^{-2}$

MPI@LHC, CERN. 3-7 Dec 2012 A Model of Diffraction K.

$$\sigma_t(s > s_F) = \sigma_t(s_F) + \frac{\pi}{m^2} \cdot \ln^2 \frac{s}{s_F}$$

< 0.05

- This formula should be valid above the knee in σ_{sd} vs. \sqrt{s} at $\sqrt{s_F} = 22$ GeV (Fig. 1) and therefore valid at $\sqrt{s} = 1800$ GeV.
- Use $m^2 = s_o$ in the Froissart formula multiplied by 1/0.389 to convert it to mb⁻¹.
- Note that contributions from Reggeon exchanges at $\sqrt{s} = 1800$ GeV are negligible, as can be verified from the global fit of Ref. [7].
- Obtain the total cross section at the LHC:

$$\sigma_t^{\text{LHC}} = \sigma_t^{\text{CDF}} + \frac{\pi}{s_o} \cdot \left(\ln^2 \frac{s^{\text{LHC}}}{s_F} - \ln^2 \frac{s^{\text{CDF}}}{s_F} \right)$$

SUPERBALL MODEL

MPI@LHC, CERN. 3-7 Dec 2012

A Model of Diffraction

Reduce the uncertainty in s_0

Saturation glueball?

A Model of Diffraction MPI@LHC, CERN. 3-7 Dec 2012

Total, elastic, and inelastic x-sections

$$\sigma_{\rm ND} = (\sigma_{\rm tot} - \sigma_{\rm el}) - (2\sigma_{\rm SD} + \sigma_{\rm DD} + \sigma_{\rm CD})$$

R. J. M. Covolan, K. Goulianos, J. Montanha, Phys. Lett. B 389, 176 (1996)

$$\sigma_{\text{tot}}^{p^{\pm}p} = \begin{cases} 16.79s^{0.104} + 60.81s^{-0.32} \mp 31.68s^{-0.54} & \text{for } \sqrt{s} < 1.8\\ \sigma_{\text{tot}}^{\text{CDF}} + \frac{\pi}{s_0} \left[\left(\ln \frac{s}{s_F} \right)^2 - \left(\ln \frac{s^{\text{CDF}}}{s_F} \right)^2 \right] & \text{for } \sqrt{s} \ge 1.8 \end{cases}$$

K. Goulianos, Diffraction, Saturation and pp Cross Sections at the LHC, arXiv:1105.4916.

$$\sqrt{s^{\text{CDF}}} = 1.8 \text{ TeV}, \ \sigma_{\text{tot}}^{\text{CDF}} = 80.03 \pm 2.24 \text{ mb}$$

 $\sqrt{s_F} = 22 \text{ GeV} \qquad s_0 = 3.7 \pm 1.5 \text{ GeV}^2$

TOTEM vs PYTHIA8-MBR

ALICE tot-inel vs PYTHIA8-MBR

MPI@LHC, CERN. 3-7 Dec 2012 A Model of Diffraction

K. Goulianos

ALICE SD and DD vs PYTHIA8-MBR

MPI@LHC, CERN. 3-7 Dec 2012

A Model of Diffraction

CMS Total-Inelastic Cross Section compared to PYTHIA8 and PYTHIA8-MBR

More on cross sections

Slide 12 from Uri Maor's talk at the LowX-2012

		7 TeV			14 TeV			57TeV		100TeV			$1.2\cdot 10^{16}{\rm TeV}$	
		GLM	KMR	BH	GLM	KMR	BH	GLM	BH	GLM	KMR	BH	GLM	BH
	σ_{tot}	94.2	97.4	95.4	104.0	107.5	107.3	125.0	134.8	134.0	138.8	147.1	393	2067
	σ_{inel}	71.3	73.6	69.0	77.9	80.3	76.3	92.2	92.9	98.5	100.7	100.0	279	1131
	$\frac{\sigma_{inel}}{\sigma_{tot}}$	0.76	0.76	0.72	0.75	0.75	0.71	0.74	0.70	0.74	0.73	0.68	0.71	0.55
MBR	sigma_	tot		98			109		136			144		2257

Monte Carlo Strategy for the LHC ...

MONTE CARLO STRATEGY

- $\Box \sigma^{\mathsf{T}} \rightarrow \text{from SUPERBALL model}$
- □ optical theorem \rightarrow Im f_{el}(t=0)
- $\Box \text{ dispersion relations } \rightarrow \text{Re } f_{el}(t=0)$

σ_T optical theorem Im f_{el}(t=0) ↓ dispersion relations Re f_{el}(t=0)

- □ differential $\sigma^{s_{D}} \rightarrow$ from RENORM
- □ use *nesting* of final states (FSs) for pp collisions at the *IPp* sub-energy $\sqrt{s'}$
 - Strategy similar to that of MBR used in CDF based on multiplicities from:
 - K. Goulianos, Phys. Lett. B 193 (1987) 151 pp
 - "A new statistical description of hardonic and e⁺e⁻ multiplicity distributios "

Monte Carlo algorithm - nesting

SUMMARY

Introduction Diffractive cross sections > basic: SD_p, SD_p, DD, DPE derived from ND and QCD color factors combined: multigap x-sections \rightarrow ND \rightarrow no-gaps: final state from MC with no gaps this is the only final state to be tuned Total, elastic, and inelastic cross sections Monte Carlo strategy for the LHC – "nesting" Thank you for your attention