

Roberto Chierici (CNRS+CERN)

CERN PH – LHC Seminar 16th April 2012

Contents

CMS Total Integrated Luminosity 2011 (Mar 14 05:42 - Oct 30 16:09 UTC) Delivered 6.095 fb fb_ Recorded 5.561 fb Introduction ۲ Production cross section ۲ Differential cross section ۲ Top intrinsic properties Mass, spin, couplings Single top production ۲ 4/03 29/04 14/06 30/10 30/07 4/09 Top as a window to new physics ۲ Date CMS preliminary, 1.14/1.51 fb⁻¹, Muons/Electrons, Vs Selected topics CMS, 36 pb⁻¹, √s = 7 TeV Event 30 İ

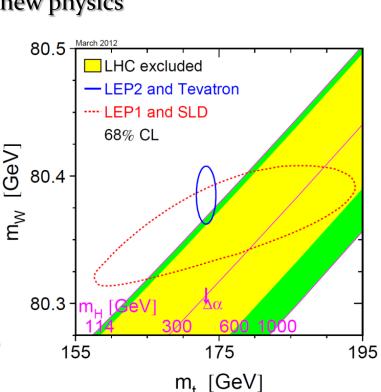
-0.8 -0.6

-0.4 -0.2

 $\cos \theta^*$

- While the overview aims to be complete, more emphasis will be put on recent/new results
- All CMS public results available from:
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

0.2 0.4

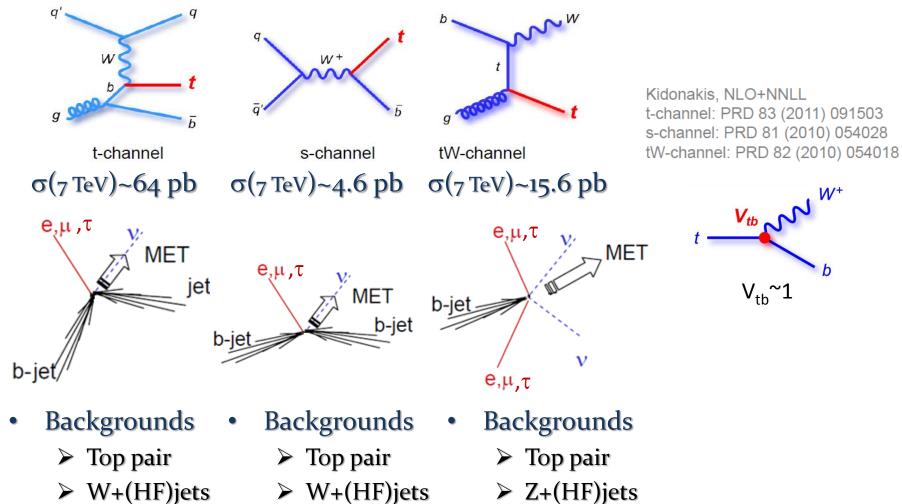

Introduction

Top physics

- Top physics is one of the main pillars of the physics program at the LHC
 - Direct access to fundamental parameter of the SM (m_t, V_{tb})
 - Direct probe of the EWSB sector (y_t~1!)
 - Other stringent tests of SM (QCD predictions)
 - in $d\sigma/dX$, constraints on couplings, CPT invariance,...)
 - Privileged sector for the direct manifestation of new physics
 - In production (pp \rightarrow X \rightarrow tt)
 - In association (pp \rightarrow tt+X)
 - In decay (H+, FCNC,...)

Indirect probe for the presence of new physics

- charge asymmetries, spin structure, couplings
- "The jackknife" for physics at the LHC
 - All sub-detectors are involved in top reconstruction $\stackrel{>}{\models}$
 - Helps understand (b)jet scale
 - Helps understand b-tagging
 - Constraints on PDFs
 - Top physics may be an important background for searches

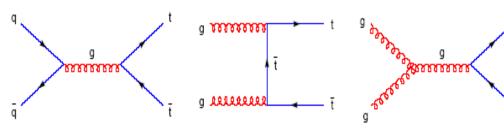


 $\propto m_t^2$

 $\propto ln(m_{H})$

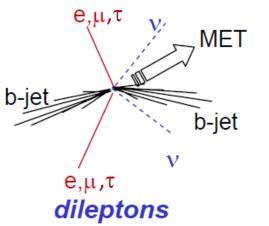
Top production at the LHC

- Top is produced in pairs (QCD) or singly (EWK)
- Single top EWK production happens via three main contributions

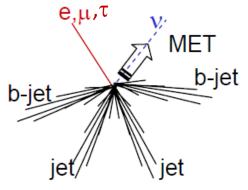

> QCD

> QCD

> QCD

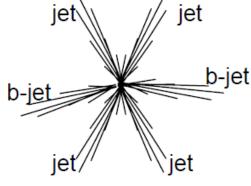

Top production at the LHC

Top pair QCD production happens mainly via gluon fusion



NLO (MCFM): $\sigma_{t\bar{t}}^{\text{NLO}} = 158^{+23}_{-24} \text{ pb}$ approx. NNLO: $\sigma_{t\bar{t}} = 163^{+11}_{-10} \text{ pb}$

Kidonakis, PRD 82 (2010) 114030 Langenfeld, Moch, Uwer, PRD80 (2009) 054009

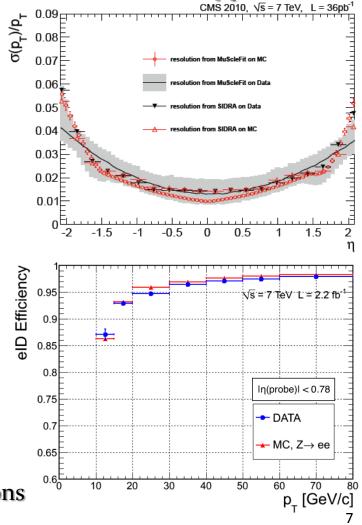


- BR~10%
- Backgrounds
 - ➤ Z+jets
 - Single top (tW)
 - > QCD

lepton + jets

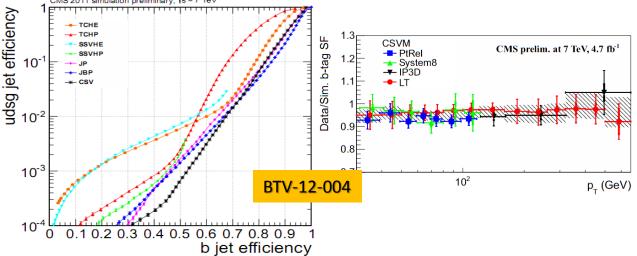
- BR~44%
- Backgrounds
 - ➤ W+jets
 - > QCD
 - Single top

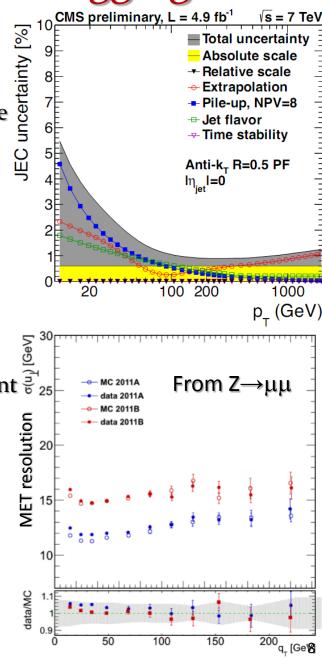
all hadronic


- BR~46%
- Backgrounds
 > QCD

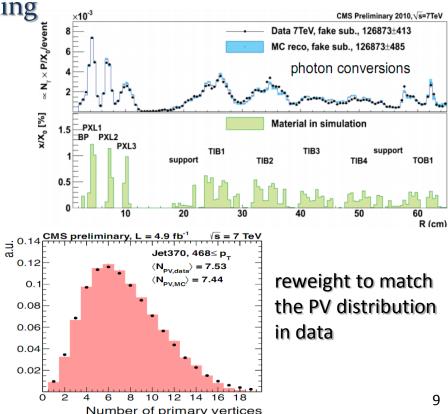
Detector objects: leptons

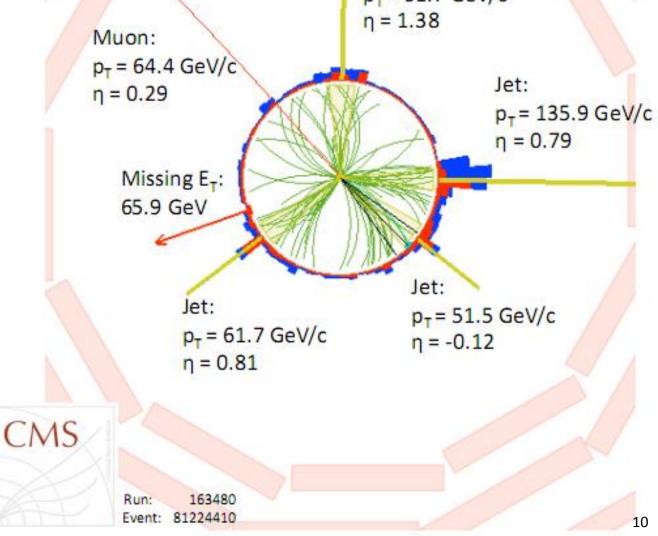
- All physics objects are essential for top physics: leptons, (b)-jets, MET
- Particle Flow reconstruction in CMS
 - Optimally combine all sub-detector information to reconstruct and identify particles
- Leptons (e, μ , τ) with p_T >20 | η |<2.5
 - > Muon p_T resolution for top is 1-2%
 - ECAL resolution ~1% for top
 - Track matching to recover for brehmsstrahlung
- Excellent ID capabilities
 - Use redundancy of sub-detectors for muons
 - Shower shapes, H/E, conversion vetoes for electrons
- Isolation in tracker and calorimeters
 - > Cut on relative isolation in a cone with $\Delta R=0.3$


$$I_{\text{Rel}}^{\ell} = \frac{E_{\text{CH}}^{\ell} + E_{\text{NH}}^{\ell} + E_{\gamma}^{\ell}}{p_{\text{T}}^{\ell} \cdot c}$$


- Trigger largely based on leptons
 - Single/double (isolated) lepton
 - Lepton+jets at HLT are used for high PU conditions

Detector objects: jets, MET, b-tagging


- Jets defined with anti-k_T algorithm with R=0.5
 - p_T>30 GeV |η|<2.5 (analysis dependent)</p>
 - \triangleright JES uncertainty via γ/Z+jets, ≤2% for most of the p_T range
 - JER about 10%
- b-tagging is optionally applied
 - Uses secondary vertices and/or IP information
 - Efficiencies and fake rates are calibrated by using data
 - Crosschecked in situ with top pair events
- Missing transverse energy
 - Requirement depends on analysis, from 20 to 60 GeV
 - > Resolution vastly improved by the Particle Flow treatment $\overline{\hat{g}}_{25}$



Simulation and Monte Carlo

- The reference generator for multi-leg final states is MadGraph_{+PYTHIA}
 - ➢ W/Z+Njets, N=o,...4, tt+Njets, N=o,...3, ME-PS matching with MLM
 - Flexibility for inclusion of new physics scenarios
 - Typically crosschecked vs NLO generators
- Other reference generators include NLO via POWHEG_{+PYTHIA} and MC@NLO_{+HERWIG}
 - For both single top and top-pair description
- Systematic sources due to theory/modelling
 - Q² choice in the ME description
 - o also affects PS parameters
 - Choice of the ME-PS matching scale
 - PDFs, UE tunings
- Detector simulation via Geant4
 - Impressive accuracy of CMS simulation
 - In time and out of time pileup are added before the simulation of the electronics

Top pair (differential) crossesections

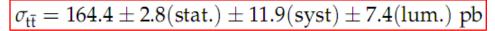
Cross section: hadronic channels

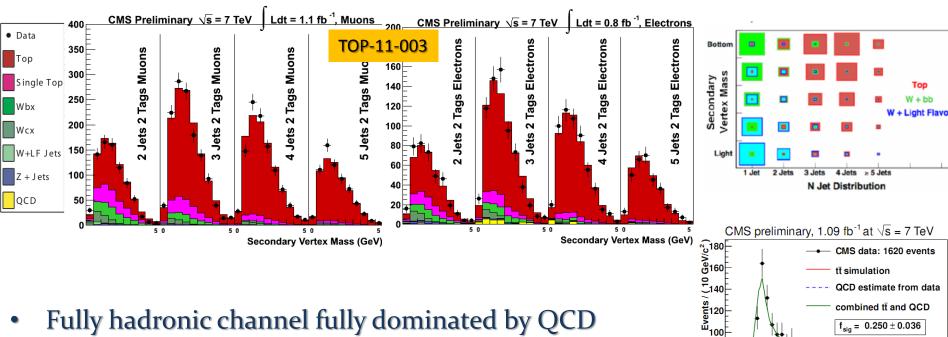
- ℓ +jets final states represent a good compromise between statistics and purity
 - 3D binned maximum likelihood fit: use secondary vertex mass, Njets, Nbtag
 - W+HF normalization included in fit
 - Systematic errors are treated as nuisance parameters (radiation parameters, JES, b-tag eff,...)

combined tt and QCD

 $f_{sig} = 0.250 \pm 0.036$

150 200 250 300 350 400

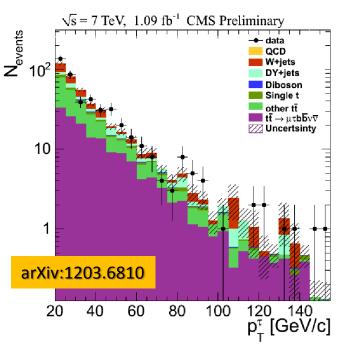

TOP-11-007


450 500 1560 m_{top} (GeV/c²)

80F

60F

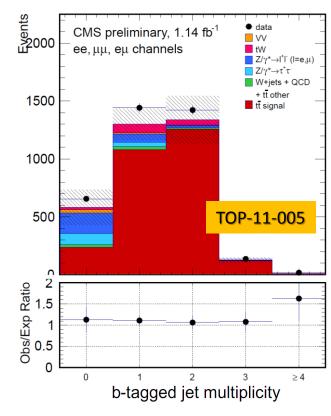
40F 20

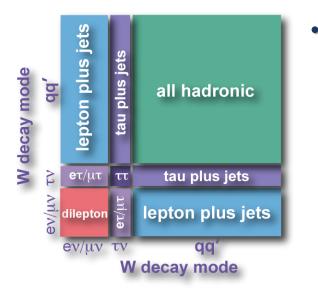

- Fully hadronic channel fully dominated by QCD
 - In situ determination of the QCD component
 - Template fit to m_t to extract the cross-section

 $\sigma_{t\bar{t}} = 136 \pm 20 \text{ (stat.)} \pm 40 \text{ (sys.)} \pm 8 \text{ (lumi.) pb}$

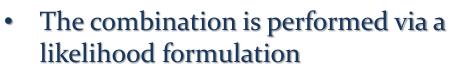
Cross section: leptonic channels

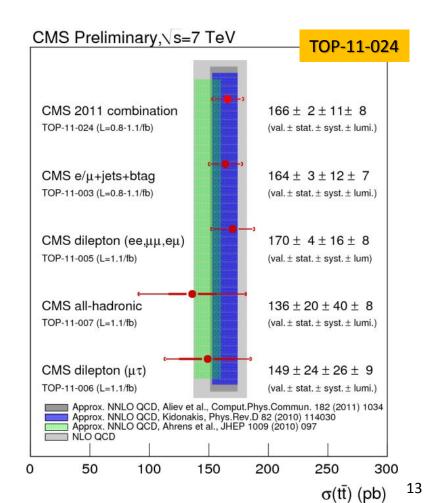
- Di-lepton (e, μ) are particularly background free
 - Counting experiment performed in three categories of number of jets and number of b-tags
 - o (2j,>=0 btags; 2j,>=1btags; 1j, >=2 btags)
 - DY background completely data-driven
 - Cross section extraction driven by the very clean e+µ channel


$$\sigma_{t\bar{t}} = 169.9 \pm 3.9 \text{ (stat.)} \pm 16.3 \text{ (syst.)} \pm 7.6 \text{ (lumi.)pb}$$



- Tau-fake leptons determined from data by using QCD events
- First top pair cross section measurement at the LHC involving τ


$$\sigma_{t\bar{t}} = 148.7 \pm 23.6(stat.) \pm 26.0(syst.) \pm 8.9(lumi.) \text{ pb}$$


Cross section combination

- All top pair final states are (being) investigated
 - \blacktriangleright $\ell(e,\mu)$ +jets, $\ell\ell(all but \tau\tau)$ +jets and fully hadronic final states in the combination.
 - \succ τ +jets in the works...

- Counting experiment are expressed as individual bins
- Experimental uncertainty close to 8%
- Challenging approximate NNLO computations !
- Even more stringent in perspective with more precise estimation of the luminosity
 - Error on luminosity down to 2.2%

Top pair differential cross sections

CMS Preliminary, 1.14 fb¹ at vs=7 TeV

— MadGraph — MC@NLO

POWHEG

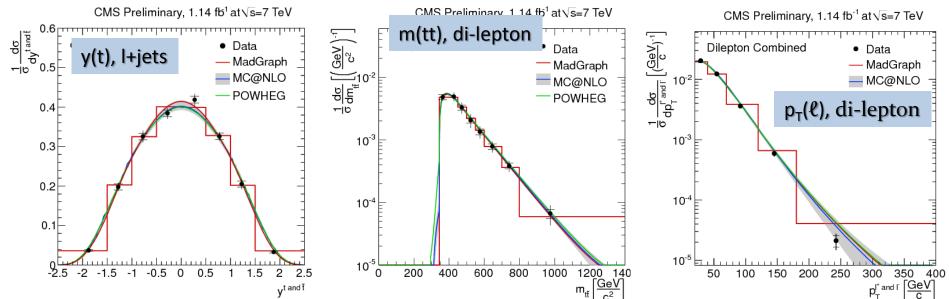
160 180 200

 $p_{T}^{I}\left[\frac{GeV}{c}\right]$

140

Data

...........


e/u + Jets Combined

p_T(ℓ), ℓ+jets

10⁻³

TOP-11-013

- First measurement of normalized differential cross-sections in top pair production at 7TeV $\frac{1}{\sigma} \frac{d\sigma^{i}}{d\mathbf{X}} = \frac{1}{\sigma} \frac{N_{\text{Data}}^{i} - N_{\text{BG}}^{i}}{\Delta_{\mathbf{X}}^{i} \epsilon^{i} L}$ $\frac{\overline{\sigma}_{c}}{\frac{1}{c}} \frac{d\sigma}{\left[\left(\frac{GeV}{c} \right)^{-1} \right]}$
 - Important test of pQCD
 - Sensitive to new physics
 - Event selections similar to the total cross section analyses
- Full kinematics reconstructed via kinematic fit (ℓ +jets) or a probabilistic reconstruction of neutrinos (di-leptons)
- Unfolding to parton level
 - Via bin-by-bin correction or full unfolding (SVD)
 - Look at variables involving leptons, tops, top pairs

Top pair differential cross sections

CMS Preliminary, 1.14 fb¹ at√s=7 TeV

CMS Preliminary. 1.14 fb⁻¹ at √s=7 TeV

Data

- MadGraph

350 400

and t GeV

Data

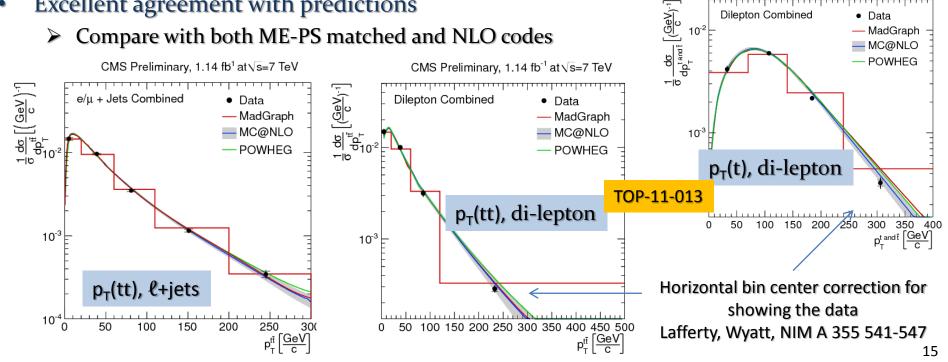
- MadGraph — MC@NLO

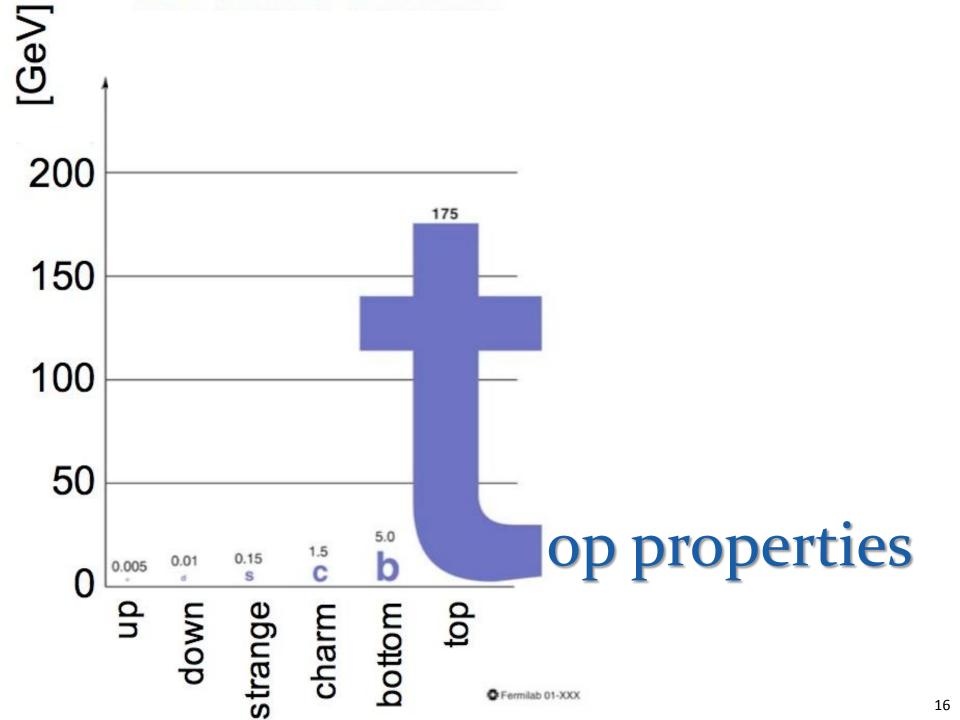
— MC@NLO POWHEG

e/u + Jets Combined

 $p_{\tau}(t), \ell$ +jets

Dilepton Combined


 $\frac{d\sigma}{dp_{T}^{t\,and\,\tilde{t}}}\Big[\Big(\frac{GeV}{c}\Big)$


-io

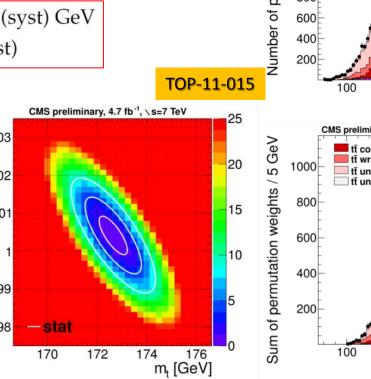
10⁻²

10

- Binning optimized for purity (migration in bin i) and stability (migration out of bin i)
- Top quark distributions essential for e.g. studies on radiation
- Systematic errors (only shape uncertainties important)
 - Most important are background knowledge, radiation and hadronisation uncertainties
- Excellent agreement with predictions
 - Compare with both ME-PS matched and NLO codes

Top mass in ℓ+jets

- Top mass reconstructed via kinematic fits using the event kinematics
 - Likelihood method considering all jets permutations and b-tagging information
 - ➢ Need of PDFs per permutation as a function of m_t and JES. Calibration on MC.


 $\mathcal{L}_{event}\left(x|m_{t}, f_{t\bar{t}}\right) = f_{t\bar{t}}P_{t\bar{t}}\left(x|m_{t}\right) + \left(1 - f_{t\bar{t}}\right)P_{bkg}\left(x\right)$

- Measurement dominated by systematic uncertainties
 - JES –also fit in situ– and (conservative) theory errors

 $m_t = 172.64 \pm 0.57 \text{ (stat+JES)} \pm 1.18 \text{ (syst) GeV}$

JES =
$$1.004 \pm 0.005$$
 (stat) ± 0.012 (syst)

 δ_{m_t} (GeV) δ_{IES} Calibration 0.15 0.001 S 凹1.03 0.002 0.17 *b*-tagging 0.000 b-IES 0.66 p_T - and η -dependent JES 0.23 0.003 1.02 Jet energy resolution 0.21 0.003 1.01 Missing transverse energy 0.08 0.001 Factorization scale 0.76 0.007 ME-PS matching threshold 0.25 0.007 Non-*tt* background 0.09 0.001 0.99 0.005 Pile-up 0.38 PDF 0.05 0.001 0.98 Total 1.18 0.012 CR error not included

CMS preliminary, 4.7 fb⁻¹, \s=7 TeV

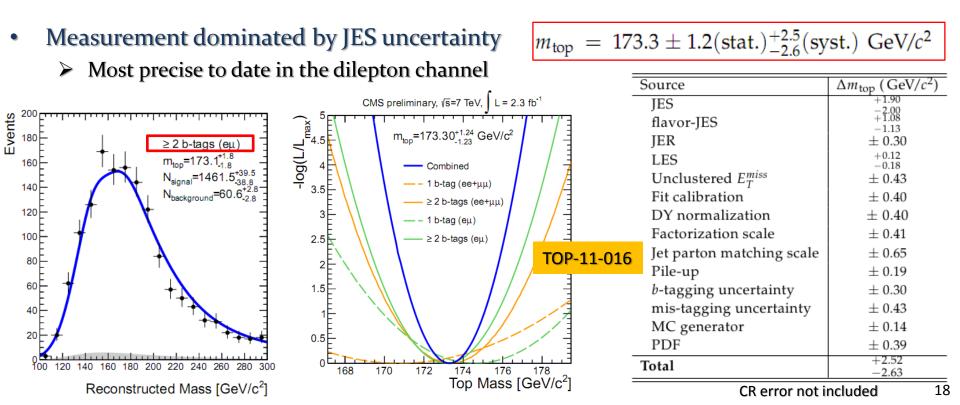
tt correct

tī wrona

QCD

W→b

Z+jets

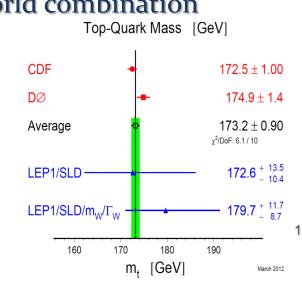

2000

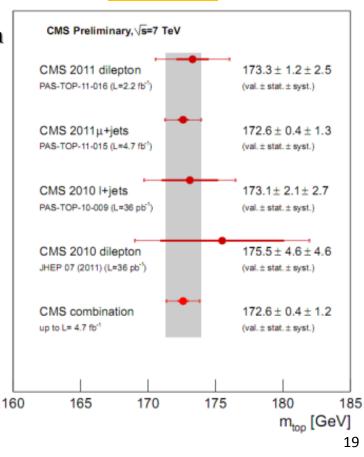
1800

GeV

Top mass in di-leptons

- Selection similar to the cross section measurement, plus additional MET cut for ee, µµ.
 - DY shapes taken from data in the low MET region
- Reconstruct the event kinematics by using the KINb method
 - Numerically solve the equations for kinematics. Count number of solutions compatible within resolution with the event kinematics. The most likely value for m is the estimator for m_t
 - Maximum likelihood fit of the resulting distribution for ee, $\mu\mu$, $e\mu$, 1 and 2 b-tags in the event
 - Method linear in m_t and unbiased after calibration

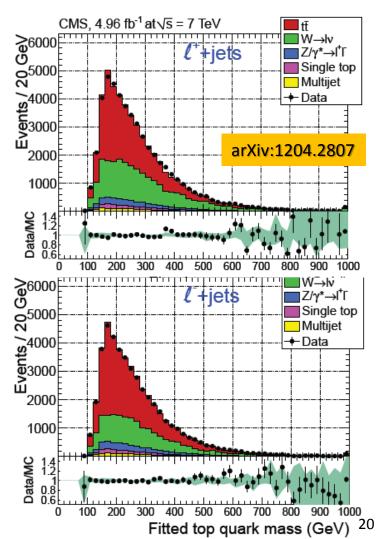

Top mass combination


- In both di-lepton and l+jets channel, the CMS m_t measurements are competitive with the corresponding ones at the Tevatron
- Use BLUE for the CMS combination, with detailed categorization of systematic errors according to their correlations
 - Combination dominated by the l+jets channel
 - Results very robust against changes in correlation values/categories

 $m_{top} = 172.6 \pm 0.4 \text{ (stat.)} \pm 1.2 \text{ (syst.)} GeV/c^2$

Towards LHC and world combination

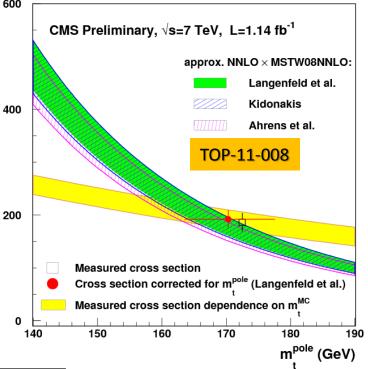
Work ongoing in
 the TOPLHCWG
 In contact with the
 TEVEWWG


TOP-11-018

Top-antitop mass difference

- Test CPT invariance in the top sector
 - ➢ Reconstruction of the hadronic side: compare ℓ+jets and ℓ-jets events
 - ➤ Use kinematic fit, and an event-per-event likelihood for ℓ^- and ℓ^+ separately
 - $\circ~$ Same method of the top mass extraction
- Most systematic effects cancel out
 - Measurement is statistically limited
 - World's best so far, and consistent with the SM
 - Consistency also between e and μ channel

 $\Delta m_{\rm h} = -0.44 \pm 0.46$ (stat) ± 0.27 (syst) GeV

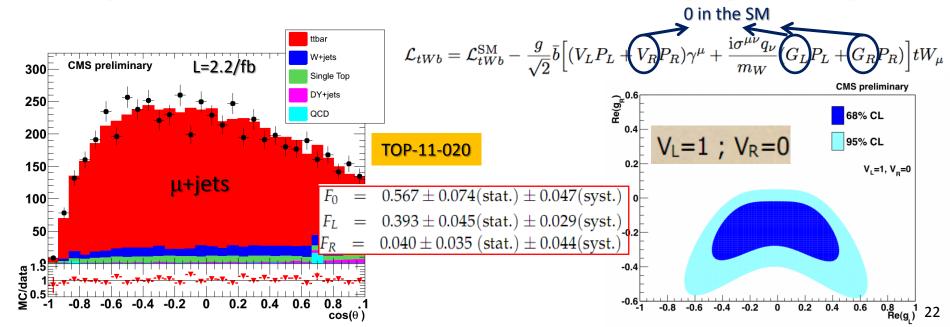

$\Delta m_{\rm f} = -0.44 \pm 0.40$ (stat.)	$) \pm 0.27$ (syst.) Gev
Source	Estimated effect (GeV)
Jet energy scale	0.04 ± 0.08
Jet energy resolution	0.04 ± 0.06
b vs. b jet response	0.10 ± 0.10
Signal fraction	0.02 ± 0.01
Difference in W ⁺ /W ⁻ production	0.014 ± 0.002
Background composition	0.09 ± 0.07
Pileup	0.10 ± 0.05
b-tagging efficiency	0.03 ± 0.02
b vs. b tagging efficiency	0.08 ± 0.03
Method calibration	0.11 ± 0.14
Parton distribution functions	0.088
Total	0.27

Top mass from cross section

- Use the dependence of σ_{tt} on m_t to infer the latter from the σ_{tt} measurement
 ➢ Need full dependence of the acceptance of the analysis on m_t.
 - First extraction realized for the measurement in the di-lepton channel
- Theory errors include scales, PDFs, $\alpha_{\rm S}({\rm m_Z})$ $\hat{\mathfrak{g}}$
 - Extract both pole mass and MS mass
 Pole mass directly related to what measured in direct reconstruction (~1 GeV uncertainty)
- Moderate dependence on the used PDFs
 > 1-2 GeV: the used value of α_s is crucial
- Extracted top mass not competitive with the direct determination

Approx. NNLO × MSTW08NNLO	m_t^{pole} / GeV	$m_t^{\overline{\mathrm{MS}}}$ / GeV
Langenfeld et al. [7]	$170.3^{+7.3}_{-6.7}$	$163.1^{+6.8}_{-6.1}$
Kidonakis [8]	$170.0^{+7.6}_{-7.1}$	_
Ahrens et al. [9]	$167.6^{+7.6}_{-7.1}$	$159.8^{+7.3}_{-6.8}$

W helicity and top couplings


Measure θ*_ℓ, the angle between the lepton and the b direction (in the W rest frame)
 dσ/dcosθ*_ℓ reflects 3 possible polarizations of the W. Sensitive to anomalous tWb couplings

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}^{*}} = \frac{3}{8} (1 + \cos\theta_{\ell}^{*})^{2} F_{R} + \frac{3}{8} (1 - \cos\theta_{\ell}^{*})^{2} F_{L} + \frac{3}{4} \sin^{2}\theta_{\ell}^{*} F_{0} \qquad F_{R} = 4.1 \times 10^{-4} F_{L} = 0.301$$

• The polarization fractions can be extracted by a fit to data

 $F_L = 0.301$ $F_0 = 0.698$

- ➢ Fit performed with and without the assumption of F_R=0
- Main systematic errors represented by JES and theory uncertainties/W+jets normalisation
- Helicity fractions can be translated to constrain anomalous couplings and NP operators

Constraints on the top charge

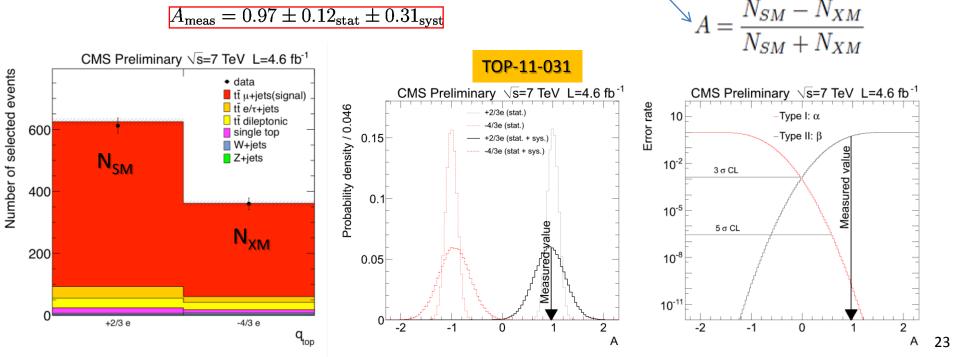
q,,

9_b

qμ

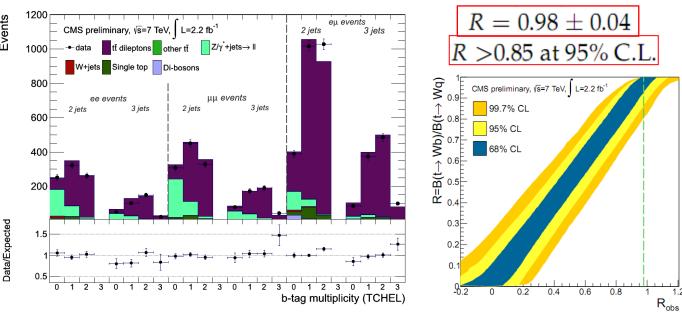
ť

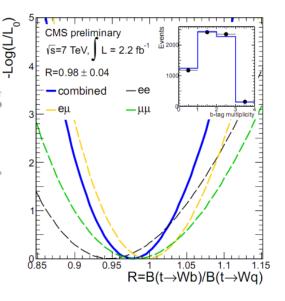
 $q_{i}^{lep} = q_i + q_k$


 $q_{\rm p}^{\rm lep} = q_{\mu} - q_b$

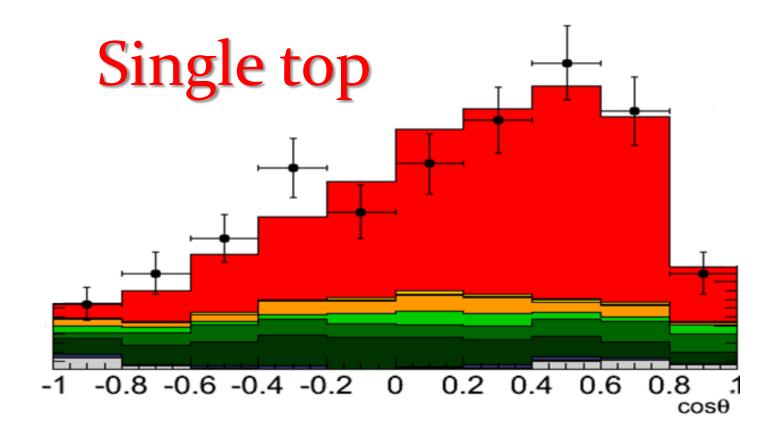
assigne

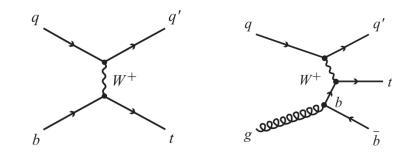
m_{inv}=m_{top}


minv=mtop

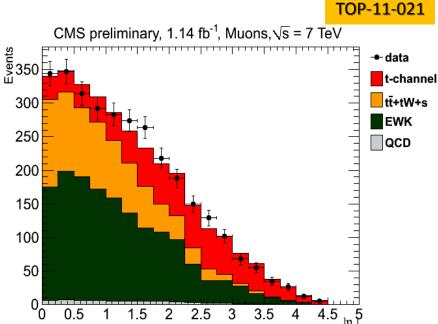

- Assign charge from semi-leptonic b decays
 - ➤ Minimize wrong charge assignment (e.g. B→D) by using p_{Trel} to optimize efficiency and purity
 - Performance measured in QCD b-bbar events
- Reconstruct hadronic top by using the knowledge of m_t
- Limit exotic scenario from asymmetry in charge categories
 - N_{SM} and N_{XM} are described by PDFs using signal/bckg

$R=BR(t\rightarrow Wb)/\Sigma_kBR(t\rightarrow Wq_k)$


- Use di-lepton events with standard selection
 - DY background entirely data driven
- Estimate Wq contribution from wrong assignments by using data driven approach which uses sidebands in m(qℓ)
- b-tagging multiplicity is then parameterized as a function of R, ε_b, ε_q, (combinatorial) backgrounds
 - > Also dividing in ee, $\mu\mu$, $e\mu$ and 2, 3 jets events
 - > Fit R assuming ε_b from b production in di-jets
 - Determine F-C frequentist interval after profiling of all nuisances

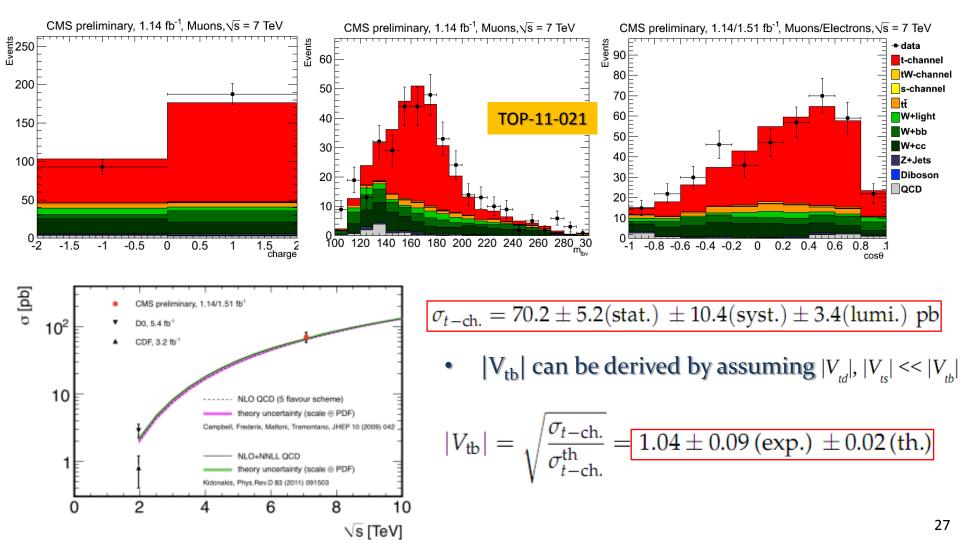

TOP-11-029

Source	Uncertainty
ε _b	0.031
ε_q	0.011
Jet energy scale	0.002
Jet energy resolution	0.004
Pile-up	0.006
Q^2	0.023
Jet-parton matching scale	0.011
DY contamination	0.012
t t contribution	0.002
Total	0.044



Single top - t-channel

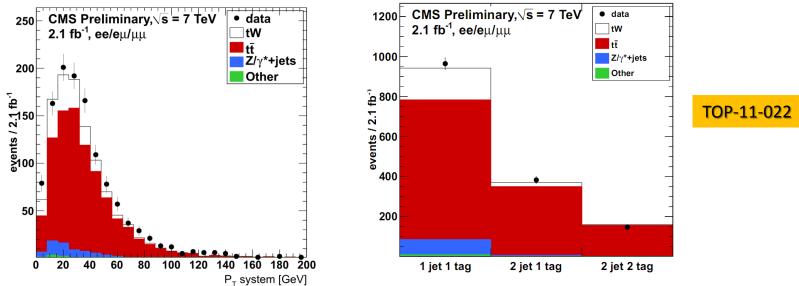
- Select events with one isolated lepton, one b-tagged jet, one forward jet
 - → 1 isolated e (p_T >30 GeV) or μ (p_T >20 GeV)
 - ▶ 2 jets, E_T>30 GeV, |η|<5.0</p>
 - One "tight" b-tag
 - Transverse W mass > 40(50) GeV

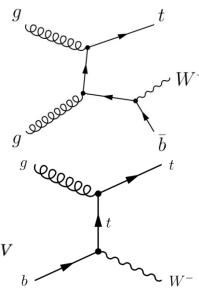


- Cross section is extracted from a fit to the angular variable η_ℓ
 - > All background rates and shapes are taken from control regions in data
 - $\circ~$ QCD from fits to low $m_{T\!\!P}$ MET
 - Top pair from the 3 jets, 2 b-tag sample
 - $\circ~$ W+light jets from 2 jets and anti b-tag
 - W+HF via fit of sidebands in m(ℓbv)
- Main systematic errors
 - > JES
 - Background knowledge from data-driven methods

Single top - t-channel

- Excellent agreement in differential distributions after the fit:
 - ➤ Charge ratio: N(ℓ^+)~1.9N(ℓ^-)
 - Angular and mass distributions




Single top – tW production

• Same as top pair at NLO

Subtraction schemes needed to properly define the observable

- Signature similar to di-lepton top pair (one b-jet less)
 - 2nd b-jet veto is applied for signal region
 - Add conditions on the p_T of the system $|\sum \vec{p}_T + \vec{p}_T^{b-jet} + \vec{E}_T^{miss}| < 60 \ GeV$
 - \blacktriangleright Categorize events to constrain the tt component and ε_{b}
- Use maximum likelihood fit for σ(tW):
 - > Observed significance is 2.7 σ (expected 1.8+/-0.9 σ)

 22^{+9}_{-7} (stat \oplus syst) pb

g Looking for something beyond the SM

Charge asymmetries

CDF Run II Preliminary L = 8.7 fb

top

 0.003 ± 0.004 (stat.)

 0.001 ± 0.005 (stat.)

 0.0115 ± 0.0006

anti-top

η

A FB

top

anti-top

n

CMS Preliminary

Tevatron

Uncorrected

BG-subtracted

Final corrected

Theory prediction (SM)

0.3

0.2

350 400 450

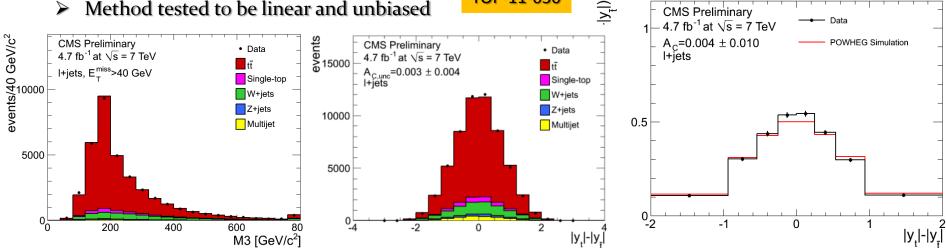
+Jets Data $\alpha_{\rm M}$ = (8.9 ± 2.6) × 10⁻⁴ NLO (QCD + EW) tt + Bkg $\alpha_{M} = 2.4 \times 10^{-4}$

> 500 550 600 650 700 M_# GeV/c²

arXiv:1101.0034, arXiv:0712.0851

 $0.004 \pm 0.010 \text{ (stat.)} \pm 0.012 \text{ (syst.)}$

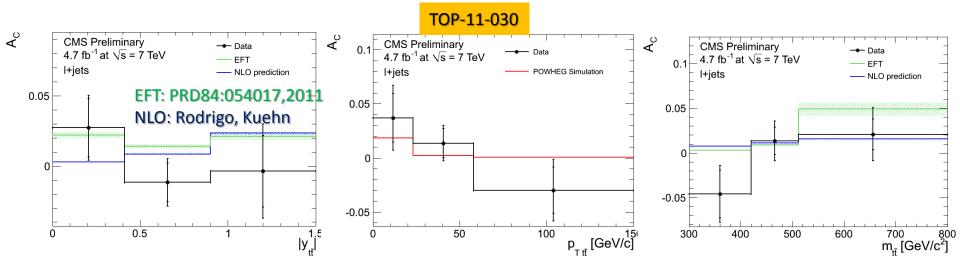
LHC


- Tevatron observes anomalous charge asymmetries
- Different definition is possible at the LHC, but asymmetry diluted ^{of}

 $\frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$ $\Delta |y| = |y_t| - |y_{\overline{t}}|$

Need a full event reconstruction

 \blacktriangleright Use ℓ +jets events, the top charge is correlated to that of the lepton

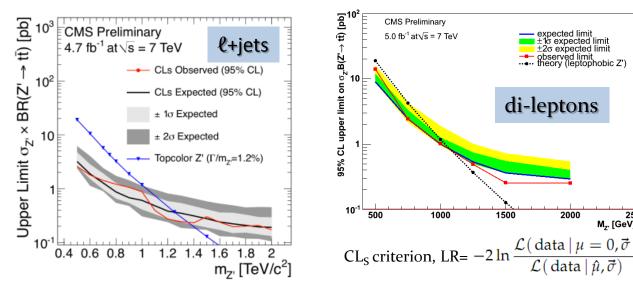

- Use W mass constraint for the neutrino
- Use top kinematics to solve combinatorial
- **Results are unfolded**
 - Via regularized matrix inversion
 - Method tested to be linear and unbiased

TOP-11-030

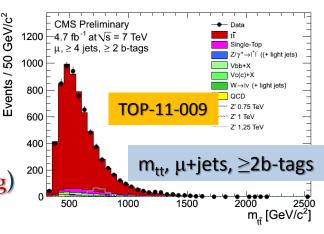
Differential asymmetries

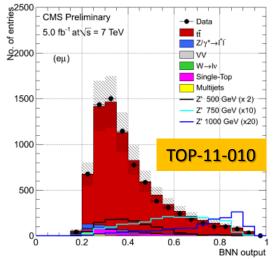
- In many new physics scenarios the charge asymmetry depends on phase space
 > High mass/p_T regimes enhance the quark annihilation part of the initial state
- Measure A_c differentially as a function of p_T , y or invariant mass of the top pair system
- Full 2D regularized unfolding after background subtraction
 - Method tested to be linear in distortion function of the second unfolded variable
- Good agreement found between data and SM expectations within uncertainties
 - Main systematics errors are given by the unfolding itself and lepton ID efficiency
 - Results also compared with EFT predictions
 - Anomalous axial coupling of gluons to quarks: capable to explain the Tevatron anomaly

New physics in production: resonances


expected lim

 $\pm 1\sigma$ expected limit $\pm 2\sigma$ expected limit


2000


2500 M₇. [GeV]

- Several models of new physics predict resonances decaying into top pairs
- ℓ+jets events: full event reconstruction
 - Jet pairing by χ^2 association (correct in ~70%)
 - Multi-jet and W+jets background from data control regions
 - Fit together different Njets, b-tag categories
- Di-leptons: use a NN approach to best separate S and B
 - Uses information from jets, leptons, MET
- Systematic errors include shape (JES, b-tag, theory modelling) and rate (efficiencies, background yields) changing ones

New physics in production: high boosts

- Advanced techniques for top tagging in case of jet merging
 - Essential for hadronic channels at high mass/boosts
 - C-A modified algorithm finding jet substructures compatible with top kinematics
 - Entirely calibrated by using QCD data

CMS Preliminary √s = 7 TeV

m_{tt}, e+jets

2.5

1.5

L = 4.33 fb⁻¹, e+jets

event yield / 0.10 TeV/c

2000

1800 F

1600

1400

1200

1000 F

800F 600 F

400 F

200

Also alternative ℓ +jets analyses which increase sensitivity at very high masses

[dd]

 \rightarrow t t) · BR

م(Z

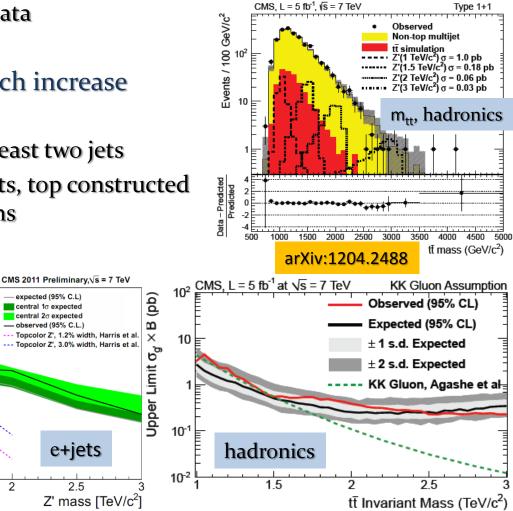
EXO-11-092

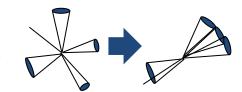
M. [TeV/c²]

10

10-1

10⁻²


- No lepton isolation conditions, at least two jets
- No direct reconstruction if more jets, top constructed favoring back to back configurations


L = 4.33 fb⁻¹, e+jets

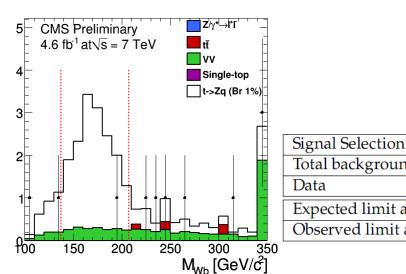
1.5

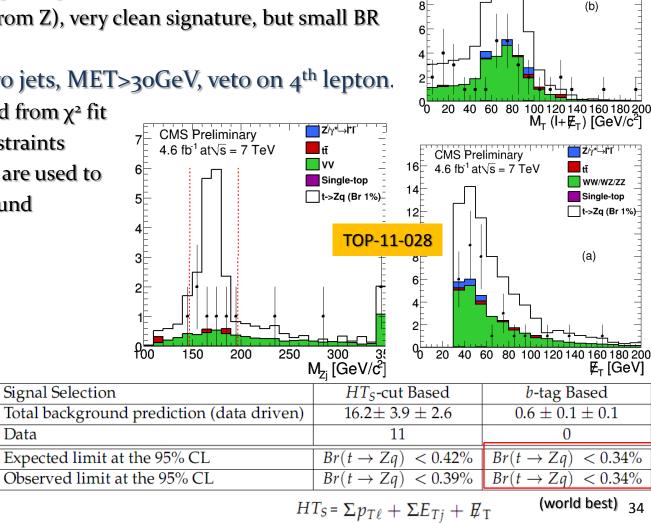
2

CLs method

Type 1+1

New physics in decays: FCNC


At LO FCNC is highly suppressed: BR SM $(t \rightarrow qZ)_{NLO} \sim 10^{-14}$


NLO corrections from BSM can enhance the BR by a factor of 10¹⁰

Search in top decays: $t \rightarrow qZ \rightarrow q\ell^+\ell^-$

Tri-lepton events (two from Z), very clean signature, but small BR

- Selection also requires two jets, MET>30GeV, veto on 4th lepton.
 - Full kinematics specified from χ^2 fit or using m_w and MET constraints
 - Either HT_s or b-tagging are used to further reduce the background
 - No excess observed

Z/γ*⊸I⁺Γ

ww/wz/zz Single-top

t->Zq (Br 1%)

tī

CMS Preliminary

4.6 fb⁻¹ at √s = 7 TeV

16

14

12

10ŀ

Other new physics compatible with top pairs

- Z' model could explain the Tevatron A_{FB} asymmetry
 - Search for two same sign leptons and at least two btagged jets with MET

CMS Preliminary, √s = 7 TeV, L_{int} = 4.98 fb⁻¹

1σ consistent with A 2σ consistent with A

600 800 1000 1200 1400 1600 1800 2000

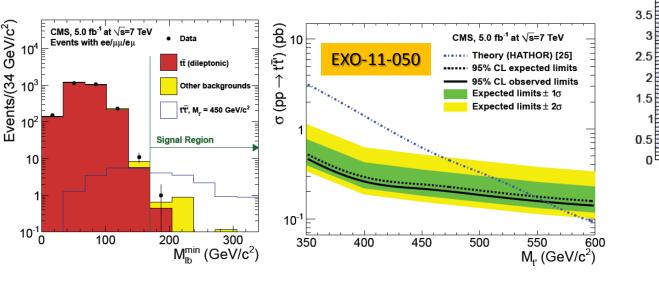
Combined Observed Limit tt + tti

SUS-11-020

, Berger et al. Berger et al.

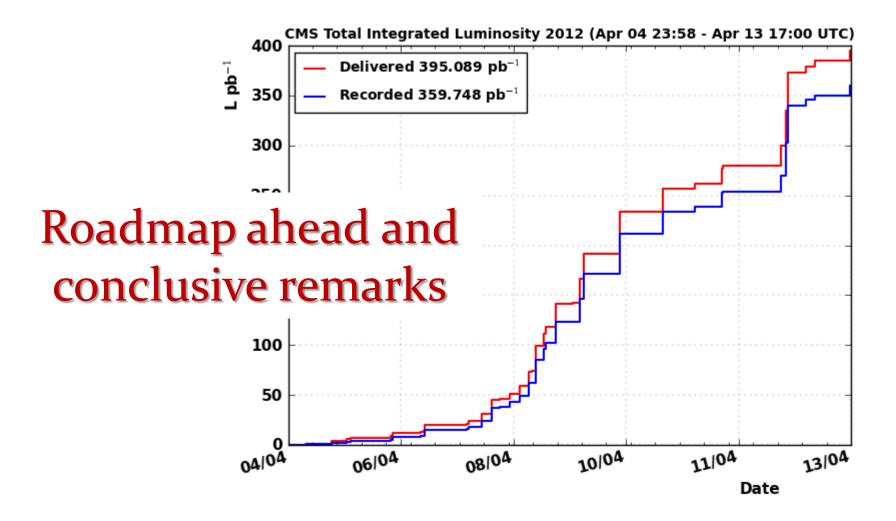
m(Z') GeV

EXO-11-036


arXiv:1109.4985

5

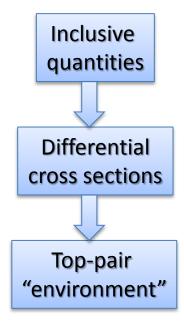
400


• Heavy top like quark decays $t'\overline{t'} \rightarrow bW^+\overline{b}W^-$

Look beyond the m(lb) endpoint in di-lepton events 4.5

Other searches involving fourth generation are investigated in CMS

- $\blacktriangleright \text{ Examples are } b'\overline{b'} \rightarrow tW^{-}\overline{t}W^{+} \text{ and } T\overline{T} \rightarrow tZ\overline{t}Z$
- May lead to spectacular signatures with tt+multilepton final states


Top in the year of the Scalar Boson

- Consolidate the top sector at 8 TeV
 - Total and differential cross sections.
 - Double ratios tt/Z(8TeV)/tt/Z(7TeV)
 - Monitor distributions sensitive to new physics
- New ideas in the high statistics/precision regime
 - Alternative methods for determining the top mass
 - $\circ~$ Favour methods presenting systematic errors uncorrelated with standard reconstruction
 - Constraining systematic errors by using data
 - Study Colour Reconnection effects, constrain theory uncertainties on radiation by using data
 - > Let us go doubly differential (e.g. $m_t(X)$; $A_C(Y)$)
 - $\circ~$ Select phase space regions where the sensitivity to the main systematic errors is reduced
 - "Environmental" studies of top-pair: tt+X !
 - $\circ~$ Study couplings to bosons, and test signatures of new physics in association
- Other ongoing work in CMS/top
 - > Top spin correlations, top finite width effects
 - Single top s-channel and differential distribution
 - Global fit to the Wtb vertex (top pair and single top measurements)
 - Contribute to the combination efforts ongoing in the TOPLHCWG

Process	$\sigma(8\text{TeV})/\sigma(7\text{TeV})$
Top pair	~1.5
Single top t-ch	~1.3
Single top tW	~1.5
Single top s-ch	~1.2

Conclusions

- Last year has been crucial for top physics
 - From a handful of events to a deep testing of the top sector
 - The realm of differential distributions
- CMS has been doing great...
 - Very competitive analyses in the top sector
 - We start to challenge theory predictions
- ...and the Standard Model looks healthier than ever
 No hints of new physics yet
- This year will be even more crucial for top physics
 - Doubly differential distributions
 - In situ constraints of theory systematic uncertainties
 - Study the environment in association to top pair events
 - Find hints of physics beyond the Standard Model ?

