Optical Link Development for Phase-1, ATLAS LAr

Opto Workshop 8th June, 2012

SMU PHYSICS LAB
Andy Liu
Datao Gong
Annie Xiang
Kent Liu
Jingbo Ye

Outline

- 1. ATLAS LAr phase-1 upgrade and the requirements on optical links.
 - Latency,
 - Data rate and its wide range,
 - Specific transmitting frames,
 - Power dissipation,
 - Rad-tol and related difficulties.
- 2. The developments to answer the challenges.
 - COTS,
 - ASICs,
 - Custom MTx.
- 3. Benefits from common projects: GBT based TTC + SCA, custom optical transmitter, fiber, etc, and the back-end.
- 4. Schedule and plan.

ATLAS LAr phase-1 upgrade and the requirements on optical links

1. ATLAS LAr phase-1 upgrade

- Goal: to improve level-1 trigger for luminosities expected after LS2 (phase-1) <u>and</u> LS3 (phase-2).
- Idea: to provide level-1 trigger with fine granularity calorimeter information that is usually only available at level-2, so that level-1 trigger can implement some of the level-2 algorithms.

2. Requirements on optical links

- Latency to be within some legacy buffers on detector front-end for the current level-1 that cannot be upgraded.
- Data rate is about 200 Gbps per board, or 4.2 5.6 Gbps per fiber over 40 fibers, to accommodate data transmission and calibration needs.
- Specific transmitting frames are investigated to cope with SEU induced link synch loss, and to work with ADC serial outputs.
- Power dissipation must stay within the capacity of the current cooling system. Need to balance with rad-tol requirement.

 Rad-tol through phase-2, interesting technical challenges but difficulties in disgusting legal entanglements.

The developments to answer the technical challenges

The ASIC approach, based on LOC and GBT+VTRx

The developments to answer the technical challenges

For phase-0 (or LS1, 2013/14) installation, as a demonstrator for system proof-of-principle, Kintex-7 and COTS LDD will be used in places of LOC ASICs.

The developments to answer the technical challenges

Custom MTx a la VTTx. TOSA based to avoid difficulties in optical coupling, and heat dissipation. We will need fiber connectors smaller than the LC.

R&D work on VCSEL array based optical transmitter will continue and under the support of DOE generic R&D.

For ASIC work please see the ASIC talk.

Benefits from common projects

1. Benefits from common projects:

- GBT based TTC + SCA. For forward compatibility, and also for interfaces such as I²C, JTAG, we decide to use GBT for the control and configuration link. The availability of GBT may become an issue for the FPGA based demonstrator link that has a time-line of phase-0
- custom optical transmitter. MTx = M x VTx plus a change of the optical connector. The critical high speed electrical circuit will be "copy&place"-d.
- Fiber and passive components. We will only use MM fiber, in 12-way ribbon format.
- Link back-end, again "copy&place" with parallel optics (miniPOD) version from the Versatile Link project.

Schedule and plan

- 1. Kintex-7 + COSTs MTx based demonstrator is for LS1.
- 2. LOC ASIC based data link is for LS2, and driven by the ASIC developments.
- 3. GBT based control link is aimed for LS1. A TTCrx based fallback solution will be investigated Spring of 2013 if GBT is not available at that time.