ATLAS ITk Plans for Optical Links

Special Diamond Jubilee edition

60 slides to commemorate 60 years of Her Majesty's Reign

Jubilee Outline

- Inner tracker (ITk) layout (June 2012)
 Features differing from current detector
- Barrel Strip detector (Stave concept)
 Forward Strip tracker (Petal concept)
- Pixel detector (stave concept)
- Summary and Issues

Phase II tracker - 'Cartigny' layout

- Strip system
 - Inner (short strip) barrel (3 layers)
 - Outer (long strip) barrel (2 layers)
 - ECs
 - Stubs at large r to increase BdL (this hopefully will be revised)

- Pixel
 - 2 inner pixel barrel layers (separately removable)
 - 2 outer pixel barrel layers
 - Disks
- Uniformly 14 hits up to η =2.5, pixel tracking up to up to η =2.7 ³

Tracker elements

Concept:

To create integrated, fully functional objects, which can be

- Produced in parallel
- Tested fully early in the assembly _
- Single staves are of limited value and loss of small number has small impact on project
- \rightarrow Project robustness

Barrel strip stave

Strip staves

- Silicon Modules directly bonded to a cooled carbon fibre plate
 - Plate a sandwich construction for high structural rigidity with low mass
- Services integrated into plate, including power, control and data transmission.
 - Called a Stave in barrel region
 - and a Petal in the forward direction

Strips electronics & readout (prototypes – close packed text: G. Viehhauser)

- **Sensors**: n-in-p single sided design, 98 x 98mm², 500V Max
- Hybrids: glued onto sensor
- ASICs: a 130 nm CMOS chipset
 - ABCn130: binary readout architecture (like SCT) but new protocol, 256 inputs for smaller hybrids, ROI and fast L1 trigger block
 - HCC: interface and module controller (1 per hybrid)
- LV Powering: either serial (SP) or DC-DC at each hybrid/module
 - Additional powering and protection chipset, prototyped and new versions in development
- Readout is being tested using stavelets (goal: good noise performance)

Example: DC-DC powered stavelet 4 modules 8 hybrids 160 ABCn 20k channels

Double Trigger Noise Occupancies

	HO		H1		H2		НЗ		H4		H5		H6		H7	
Column	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.0fC	0	0	0	0	DTN clean at 0.75fC, and counts at 0.5fC all <40 \odot									0	0	0
0.75fC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.5fC	0	1	6	36	18	5	12	38	12	2	4	9	0	0	0	4

DC-DC converter board

ATLAS Strip Read-Out (Barrel and Forward)

•Off-Detector: COTS

- •Optical engines:
- •TX: Laser driver + laser arrays
- •RX: p-i-n array + TIA/discriminator

•GBTx functionality in FPGA

Pixel staves

- Outer pixel layers
 - About 1.4m long and 5mm thick
 - Modules on both sides, overlap for full coverage, makes module mounting easier
 - Embedded Services following a similar philosophy as strip concept.
- Inner pixel layers
 - I-beam design linking neighbouring layers
 - optimizes stiffness

Readout Differences for Pixel

 Need to move O/E to larger radius because of radiation damage → high

GBT, Versatile Link (Back to Staves)

- EoS= End-of-substructure Card
 - Connects a Stave (Barrel) or Petal (Endcap) with the outside world
 - Hosts GBT, GBTSCA and Versatile Link
- EoS
 - Multi-layer PCB
 - Designed for Robustness (single point of failure)
 - Lots of components
 - $X_0 \sim 4-5\%$ (Current Estimate)

Connectivity

- Recommend to route everything through EoS
- Required
 - LV for Stave
 - LV for EoS
 - -HV

Common Connector

- Interlocks (2 lines)
- Fiber link
- Alternatives for Connectivity
 - Pigtail (Preferred)
 - Connector ("Samtec") on PCB

Default Floor plan

This all Looks nice; but is our thinking joined up?

- Fixed size packets for data transfer
- Packets contain only ~50% payload
 Optimised for 1 packet per event
- L1 data is split over as many packets as needed
- R3 data only uses 1 packet per event
- 3 packet types for data:

L1_1BC – normal data taking – fits 3 clusters (max width 4) L1_3BC – timing-in data, incl. hits from prior and next BC

R3 – reduced for latency – only 4 clusters reported, no widths

Overall Data Volume

With packets 59 bit long, BW is simply:
Trigger rate * packets/chip/event * 59 bits/pkt * 10 chips

•R3-Data BW

ITk: L0/L1 Rates

GBT Issues

- With 160 Mbps e-links, there are 20 inputs (FEC), BUT short strips need max. 26 inputs
- Inner short strip needs (160 Mbit e-links):

A: Two GBTs

- B. One GBT running in wideframe mode at 160 (28 inputs)
 - No Error correction
- C. A new-GBT?

Possible data rates on each data line, as defined by GBT, are 80 Mbps, 160 Mbps, 320 Mbps

Double-Link

More GBT Issues?

- Reliability
 - For this concept, it is single point of failure
 - How to make it as robust as possible
 - Self-testing and diagnosis needed
- Yield
 - BGA may be challenging
 - Can we check all balls made a good connection ?
 - How can we re-work a EoS card if needed
- Control
 - GBT needs to be in sane state upon powering, because all communication is through GBT

Strips Summary

- Reading out a strips barrel with:
 - 200 Pileup
 - 500kHz L0A, 6.4µs latency
 - 200KHz L1A, 20µs latency
 - 24 (26) 160Mb GBT e-links
 - IS POSSIBLE, BUT with almost 0% margin!

(because "upgrade" always means higher trigger rate)

- Deadtime/queuing losses need further study
 BUT unlikely to be an issue
- GBT operates with no ECC, and at the limit
 more BW would be better

Versatile Link issues (ITk perspective)

- Connecting it to the EoS...
 - Make it as robust as possible
- Monitoring
 - Can we check Versatile Link performance like light levels
 - May help to spot developing problems
- General
 - Having prototypes would help a lot

The End