SCT SEU measurement Opto Working Group Mini Workshop

Alexandru Dafinca¹, Tony Weidberg¹

¹University of Oxford

8 June 2012

- intense particle flux from beam collisions interacts with the detector → secondary, highly-energetic hadronic particles
- these can deposit enough energy in the front-end electronics of the SCT to interfere with its normal operation
- we report on a measurement of such SEU events within the SCT and compare with predictions in beam tests

SEU:

- I mechanism in SCT front-end electronics
- II measurement in beam tests
- III measurement in the SCT
- IV prediction for SCT based on beam test

SEU - Where?

• PIN diode - sensitive to small signals, largest active region

SEU - How?

- DORIC4A amplifier AC coupled with threshold close to 0.
- the minimum extra charge required to create a bit error will increase with the increasing value of the mean current in the PIN diode, $\langle I_{PIN} \rangle$

SEU - Who?

- min. energy deposition required in the few MeV range deposition of minimum ionising particles (58 keV) (MIP)
- strongly ionising π's from secondary interactions in detector

 J.D. Dowell et al. / Nuclear Instruments and Methods in Physics Research A 481 (2002) 575–584

Particle	KE (MeV)	Flux (10 ⁷ cm ⁻² s ⁻¹)	SEU observed
MIP	< 0.55	4.3	Х
Neutrons	14.7	5	\checkmark
π 's and protons	300 - 465	depends on KE	\checkmark
π's	405	12	\checkmark

Last row data used for SCT prediction.

II) Beam test setup

- send 32k pseudo-random number sequence
- receive, decode, encode, send back
- compare received with sent

Convert bit error rate in σ_{SEU} :

$$\sigma_{\rm SEU} = \frac{N_{\rm ERRORs}}{\rm flux \times t}$$

II) Beam test results

III) SEU effect in SCT

One possible measurable effect:

- SEU occurs while a L1A (level 1 trigger accept) signal is recieved by a module.
- ABCDT3A chip will miss the L1A signal.
- ABCD3TA will add to the FIFO pipe the hit info + LVL1ID/BCID counters corresponsing to the next L1A only.
- BCID and LVL1ID counters for all events stored after the SEU occurence will be out of synch with the rest of the detector until a soft reset command is sent (every few seconds).

III) SEU effect in SCT

- Look in data in the express_stream (cocktail of various triggers, EF rate ~10Hz) for error burst for consecutive events.
- typically a few seconds long
- require synchronous LVL1ID and BCID error bursts
- since SEU is expected to be rare, only allow one SEU candidate / run. Discard candidate in that run if the module has more than 1 error burst.
- Iook in runs in 2011
- $\int \mathcal{L}dt = 1.74 \text{fb}^{-1}$

III) #SEU vs. luminosity Each run analysed is a point.

 $\int \mathcal{L} dt = 1.74 \text{ fb}^{-1}$; 230 SEU candidates

III) $\langle I_{PIN} \rangle$ of affected modules

- $\langle I_{PIN} \rangle$ for all modules: 0.35 mA
- $\langle I_{PIN} \rangle$ for modules with SEUs: 0.31 mA
- Histogram of (*I_{PIN}*) for all modules is normalised to the total number of SEU candidates (230).

III) Burst timelength

- Large tail, but SEU bursts concentrated at $T \sim 30$ s.
- Regular resets do not fix the lack of synchronization, the 30s is the time it takes for the DAQ to reset the module.
- Place a cut at 60s. Assume longer error bursts have some other underlying issue rather than SEU.

12/19

III) Nr SEU vs occupancy

Nr. SEU vs. module occupancy

Profile plot of average number of SEU for modules with a certain cluster occupancy / event.

IV) Beam test σ_{SEU} vs. #SCT error bursts

- Probability of a bit flip is 0 if:
 - the bit transmitted is 1 or
 - there is no particle flux
- Let 2p be probability of a flip 0 → 1 if there is particle flux in the time bin in which the bit is received.
- 2p will depend on $\langle I_{PIN} \rangle$ and particle flux.

Extract 2p from the beam test:

- N_{errors} measured in time t
- half the time one was sending 1's, which were not affected.
- Probability of $0 \rightarrow 1$ flip when flux is present:

 $2p = 2 \times \sigma_{\text{SEU}} \times \text{fluence}$

(2)

14/19

IV) Beam test σ_{SEU} vs. #SCT error bursts

- L1A signal has the format ...00110...
- SEU can occur in any 0's in the presence of particle flux.
- 50 ns BC means only every second bit affected.

	Pre-L1A		During L1A			Pr _{miss L1A}
Collisions	Х	0	X	0	X	-
Data	0	0	1	1	0	2 × (2 <i>p</i>)

$$Pr_{\text{miss L1A}} = kp$$
, with $k = 4$ (3)

However, *k* is still not well determined.

- beam tests: flux received asynchronously with clock; the flux that induces SEU is really 6ns / 25 ns * nominal flux
- SCT: the overlap between the 6ns window and the particle flux not well known.

Spurious L1A? ABCD3TA is listening (to ..000..):

- if one bit flips here, it will not look like L1A and will be ignored
- in principle SEUs can incur multiple bit flips but at the large values of (*I_{PIN}*) used, this should be a small effect.

Control command is ..00101:

- if preceding bit flips, it will look like L1A
- control commands not very frequent, ignore this effect

IV) SCT prediction from beam test

The predicted number of missed L1A signals for any given module in any given run:

predicted #missed L1A =
$$Pr_{\text{miss L1A}} \times \#L1A (\text{run})$$
 (4)
= $k \times \frac{\text{Ev. Cluster Occupancy (module, run)}}{A_{\text{module}}}$ (5)
 $\times \sigma_{\text{SEU}} (\langle I_{PIN} \rangle)$ (6)
 $\times \#L1A (\text{run})$ (7)

- set k = 1 rather than k = 4 for now
- #missed L1A = # LVL1ID and BCID error bursts
- compare predictions vs. actually measured:
 - average over all modules in a barrel layer / endcap disk
 - sum over all analysed runs

IV) SEU measurement vs prediction

Nr SEU / module for all analysed runs.

- order of magnitude agreement.
- obvious discrepancies under investigation.

- measured SEU rate in the SCT front-end opto-electronics
- compared measurement with predictions from beam tests
- agreement within order of magnitude

To-Do:

- improve statistics, analyse full 2011 data set / 2012 data set
- algorithm too selective and misses some SEUs?
- understand features like #SEU vs. module occupancy

BackUp

SEU - Where?

Parts of the SCT optical links system sensitive to small signals:

- PIN diode (active region: diameter 350 μ m, thickness 15 μ m)
- amplifier and receiver ASIC: DORIC4A chip (much smaller active region in comparison)

SEU - Why?

- DORIC4A amplifier AC coupled with threshold close to 0.
- the minimum extra charge required to create a bit error will increase with the increasing value of the mean current in the PIN diode, $\langle I_{PIN} \rangle$
- min. energy deposition required in the few MeV range deposition of minimum ionising particles (58 keV) (MIP)

SEU mechanism

SEU - Who?

- not MIPs
- strongly ionising π's from secondary interactions within the detector
- need between 1 8 MeV to create bit error, corresponds to linear energy transfer in range 29 - 230 MeV gm⁻¹ cm².

SEU - With what effect?

• different for normal SCT operation and beam tests.

Exponential fit versus "linear" interpolation for $\sigma_{\rm SEU},\,\pi$ 405 MeV/c.

IV) SEU measurement vs prediction

Not normalised to number of modules in layer/disk.

- shape agrees well for endcaps.
- deficit in barrel layers 0,1.

