Alignment Strategy for the CMS Sllicon Tracker

Marco Rovere ${ }^{1}$
for the CMS Collaboration
${ }^{1}$ Università di Milano-Bicocca \& INFN
27-29 June 2007, RD07 Firenze

Outline

1. Alignment Challanges at CMS

- Strip Tracker
- Pixel Tracker

2. Hardware Alignment
3. Software tools for alignment

- The framework simulation of misalignment
- Alignment Algorithms:
- HIP \& Results
- Millepede II \&Results
- Kalman Filter \& Results

4. Conclusions

Alignment Challanges at CMS - Strip Tracker

\author{

- 15148 modules
 -Strip pitch: $80-205 \mu \mathrm{~m}$
 - $\sigma \approx 23-60 \mu \mathrm{~m}$
}

Alignment Challanges at CMS - Pixel Tracker

General Layout

- active area ~ $1 \mathrm{~m}^{2}$
- dimensions: $100 \mathrm{~cm} \times 30 \mathrm{~cm}$
- $66^{*} 10^{6}$ channels
- pixel size: $100 \mu \mathrm{~m}(r) \times 150 \mu \mathrm{~m}(\mathrm{z})$

Hit Resolution

- resolution: $10 \mu \mathrm{~m}$ (r) x $15 \mu \mathrm{~m}$ (z)

Barrel layers

- $r=(4.4 ; 7.3 ; 10.2) \mathrm{cm}$
- 1200 modules

Endcap disks

- $r=6 \mathrm{~cm}-15 \mathrm{~cm}$
- 700 modules

Alignment Challenges at CMS - Summary

- The large number of independent silicon sensors ($\sim 15 \mathrm{~K}$) and their excellent resolution make the alignment of the CMS strip and pixel trackers a challenging task.
- Knowledge of detector positions should be known at the level of $10 \mu \mathrm{~m}$ in the r- ϕ plane. This level of accuracy can only be reached with a track-based alignment procedure. But...
- ... a more realistic procedure would be:

1. measurement of placement and its precision during assembly of tracking

Hardware
alignment devices, e.g., from photogrammetry and detector position survey measurements
2. measurement of relative positions of sub-detectors using the Laser Alignment System (LAS)
T.B. alignment 3. \dagger rack-based alignment

Hardware Alignment: LAS \& Survey

- Survey: will provide an initial correction to assumed ideal Tracker geometry. If no complete measurement \Rightarrow an estimate of the placement uncertainty is added to the error of the track hit position leading to an improved efficiency during initial track reconstruction. - Survey\&LAS: In order to make efficient pattern recognition for the track reconstruction possible at CMS start-up, it is sufficient that the individual positions of the silicon sensors are known to about $100 \mu \mathrm{~m}$. This can be achieved with a combination of survey and LAS measurements.

Software Tools: Simulation of misalignment

To study the impact of Tracker misalignment on track and vertex reconstruction in concrete physics analysis channels, as well as to study track-based alignment algorithms, a realistic model of misalignment effects has been implemented within the standard CMS reconstruction software (CMSSW).

- (Mis)alignment implemented at reconstruction level:
- "Misalignment tools":
- Implemented as a hierarchical structure
- Ability to move and rotate modules or higher level structures

Software Tools: Simulation of misalignment

To study the impact of Tracker misalignment on track and vertex reconstruction in concrete physics analysis channels, as well as to study track-based alignment algorithms, a realistic model of misalignment effects has been implemented within the standard CMS reconstruction software (CMSSW).

- (Mis)alignment implemented at reconstruction level:
- "Misalignment tools":
- Implemented as a hierarchical structure
- Ability to move and rotate modules or higher level structures
- Dedicated "Misalignment Scenarios"
- Short term scenario
- First data taking (few $100 \mathrm{pb}^{-1}$)
- Pixel already aligned
- Strip tracker misaligned, only survey and laser alignment
- Long term scenario
- Few fb^{-1} accumulated
- Full alignment performed, residual misalignments $\sim 20 \mu \mathrm{~m}$
- Fast track refit (without redoing pattern recognition)
- implemented in standard CMS reconstruction software using a common layer of general functionality
- Management of parameters and covariances
- Derivatives wit track and alignment parameters
- I/O, Database connection

		$\begin{gathered} \Delta x \\ (\mu \mathrm{~m}) \end{gathered}$	$\begin{gathered} \Delta y \\ (\mu \mathrm{~m}) \end{gathered}$	$\begin{gathered} \Delta z \\ (\mu \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{z}} \\ (\mu \mathrm{rad}) \end{gathered}$	LAS available
TPB	Dets	13	13	13	0	No
	Rods	5	5	5	0	
	Layers	10	10	10	10	
TPE	Dets	5	5	5	0	No
	Petals	2.5	2.5	2.5	2.5	
	Layers	5	5	5	5	
TIB	Dets	200	200	200	0	Yes
	Rods	200	200	200	0	
	Layers	100	100	500	50	
TOB	Dets	100	100	100	0	Yes
	Rods	100	100	100	0	
	Layers	70	70	500	90	
TID	Dets	100	100	100	0	No
	Rings	300	300	300	0	
	Layers	400	400	400	100	
TEC	Dets	50	50	50	0	Yes
	Petals	100	100	100	0	
	Layers	60	60	500	45	

Software Tools: the Alignment Algorithms

The CMS Collaboration has developed 3 independent (complementary) algorithms to align the tracker

1. HIP
2. Millepede I\& $\|$
3. Kalman Filter

- Algorithms are implemented in standard CMS reconstruction software using a common layer of general functionality
- Management of parameters and covariances
- Derivatives wrt track and alignment parameters
- I/O, Database connection

Alignment Algorithms: HIP - Hit and Impact Point

- Minimization of track impact point (x) - hit (m) residuals in local sensor plane as function of alignment parameters
- χ^{2} function to be minimized on each

$$
\epsilon=\binom{\epsilon_{u}}{\epsilon_{v}}=\binom{u_{x}-u_{m}}{v_{x}-v_{m}}
$$ sensor (after many tracks per sensor accumulated)

- V : covariance matrix of measurement
- Linearized χ^{2} solution:
- δp is the vector of alignment parameters, namely $\delta \mathrm{p}=(\delta u, \delta \mathrm{v}, \delta \mathrm{w}, \delta \alpha, \delta \beta, \delta \gamma)$
- J_{i} : derivative of residuals w.r.t. alignment parameters
- Local solution on each "alignable object"

```
- Only inversion of small (6x6) matrices
computationally light
```

$$
\chi^{2}=\sum_{i=1}^{\mathrm{N}_{\mathrm{hits}}} \epsilon_{i}^{T} V_{i}^{-1} \epsilon_{i}
$$

$$
J_{i}=\nabla_{\bar{p}} \epsilon_{i}(\bar{p})
$$

- Correlations between modules not included explicitely but ...
- ... implicitely included through iterations

$$
\delta \mathrm{p}=\left[\sum_{i=1}^{\mathrm{N}_{\mathrm{hits}}} J_{i}^{T} V_{i}^{-1} J_{i}\right]^{-1}\left[\sum_{i=1}^{\mathrm{N}_{\mathrm{hits}}} J_{i}^{T} V_{i}^{-1} \epsilon_{i}\right]
$$

Alignment Algorithms: HIP Results

- Standalone alignment of pixel modules
- Minimize influence of misaligned strip detector:
- refitting only pixel hits of the tracks
- use momentum constraint from full track (significantly improves convergence)
- Two muons from $Z^{0} \rightarrow \mu^{+} \mu$ are fitted to common vertex
- Flat misalignment $300 \mu \mathrm{~m}$ in x, y, z
- 500 K events, 19 iterations
- Resonable convergence, RMS $\sim 25 \mu \mathrm{~m}$ in all coordinates

Alignment Algorithms: Millepede I ...

- Millepede is a linear least square method
- The global (alignment) parameters and the local (track) parameters are treated simultaneously
- Unique solution, no iterations.
- Constraints can be implemented via Lagrangian multipliers.
- Initial "knowledge" can be implemented via χ^{2} penalties.
- Millepede I algorithm decouples global (alignment) and local (track) parameters.
- linear equation system with only N (N = number of alignment parameters) needs to be solved!
- Millepede I determines a by inversion of C^{\prime}

$$
\left(\begin{array}{l}
C^{\prime} \\
\end{array}\right)\left(\begin{array}{l}
\\
b^{\prime}
\end{array}\right)
$$

- The CPU times for inversion scales with N^{3}, memory with N^{2}.
- Millepede I is limited to $\sim 10^{4}$ parameters.

$$
C^{\prime}=\sum_{i} C_{i}-\sum_{i} G_{i} \boldsymbol{\Gamma}_{i}^{-1} G_{i}^{T} \quad b^{\prime}=\sum_{i} b_{i}-\sum_{i} G_{i}\left(\Gamma_{i}^{-1} \beta_{i}\right)
$$

Alignment Algorithms: ... Millepede II

- Millepede II especially developed by Volker Blobel to handle next generations detector needs.
- Millepede Il has a new method to solve the matrix equation: it numerically minimises |C'a-b' I.
- The numerical (iterative) method uses the fact that the matrix is sparse: only nonzero elements are stored in
 double precision.
- Millepede || is faster and can handle a higher number of parameters.

$$
\begin{gathered}
\left(\begin{array}{c}
C^{\prime} \\
\end{array}\right)(a)=\left(b^{\prime}\right) \\
C^{\prime}=\sum_{i} C_{i}-\sum_{i} G_{i} \Gamma_{i}^{-1} G_{i}^{T} \quad b^{\prime}=\sum_{i} b_{i}-\sum_{i} G_{l}\left(\Gamma_{i}^{-1} \beta_{i}\right)
\end{gathered}
$$

Alignment Algorithms: Millepede | \& || Comparison

CPU Time for CMS (100k parameters):

- Diagonalization ~ 10 year@1CPU
- Inversion ~ 1 year@1CPU
- Iteration ~1 h@1CPU

Alignment Algorithms: Millepede II Results

- Misalignment: Default first data scenario.
- Data sets:
- 0.5 mio. $Z(0.5 \mathrm{fb}-1)$ mass and vertex constraint
- 25 k cosmics with momentum $>50 \mathrm{GeV}$
- Single muons of 1.5 mio. Z
- ~3 mio W ($0.5 \mathrm{fb}-1$) events
- Alignment:
> - Align the full strip and pixel tracker!
> - Number of aligned parameter ~ 50K
> - CPU time total: 1h:40min
> - Use of complementary data sets.
> - Utilizing initial knowledge. Full alignment procedure tested!
- All silicon modules (PB,PE,TIB,TID,TOB,TEC)
- translation and the rotation around normal of sensor.

Alignment Algorithms: Kalman Filter

- Method for global alignment derived from Kalman Filter
- How it works:
- measurements m depend via track model fnot only on track parameters x, but also on alignment parameters d :

$$
m=f(x, d)+\epsilon \quad \operatorname{Cov}(\epsilon)=V
$$

- Update equation of Kalman Filter:

$$
\binom{\hat{d}}{\hat{x}}=\binom{d}{x}+K(m-c-A d-B x)
$$

- Iterative: Alignment Parameters updated after each track
- Global: Update not restricted to modules crossed by track
- Update can be limited to those modules having significant correlations with the ones in current trajectory
- Requires some bookkeeping
- No large matrices to be inverted!
- Possibility to use prior information (e.g. survey data, laser al.)
- Can add mass / vertex constraints

Alignment Algorithms: Kalman Filter Results

Example of TIB(left) and TOB(right) alignment

- use $\sim 75 \mathrm{~K} \mathrm{Z}^{0} \rightarrow \mu^{+} \mu^{-}$tracks (no mass-constrain applied)
- cpu time ~50 min(left) ~ 90min(right)

Data Flow for Alignment\&Calibration

AlCaReco Format

- AlCaReco for tracker alignment
- Reduced data format containing only tracks used for alignment (plus associated hits for refitting)
- Very little disk space (local disk storage)
- Fast processing (important especially for iterating algorithms)
- AlCaReco producers
- Run during prompt reconstruction at Tier-0
- Read express stream written by HLT
- Write AlCaReco files
- Functionality:
- Select appropriate events (e.g. $Z \rightarrow \mu \mu$)
- Write out reduced information (e.g. only two muon tracks)

Data Samples

Luminosity	$10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$		$2 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$		
Time int. Luminosity	Few weeks	6 months	1 day	Few weeks	One year
	$100 \mathrm{pb}^{-1}$	$1 \mathrm{fb}{ }^{-1}$		$1 \mathrm{fb}{ }^{-1}$	$10 \mathrm{fb}{ }^{-1}$
$W^{ \pm} \rightarrow \mu^{ \pm} v$	700K	7M	100K	7M	70M
$Z^{0} \rightarrow \mu^{+} \mu^{-}$	100K	1M	20K	1M	10M

- Collision events
- High Pt isolated muons from W,Z decays
- Isolatedhigh pt tracks in min. bias / QCD jet events (at startup)
- Muons from J/Psi / Upsilon
- Non-collision events
- Cosmic Muons
- Beam Halo Muons
- Special events
- Laser alignment system

Conclusions

- Alignment of the CMS tracker and muon system is a challenge
- Large number of parameters ($\sim 100,000$ in tracker)
- High intrinsic resolution of devices
- A lot of work on track based alignment already done
- Implementation and further development of 3 different algorithms
- Alignment studies using various MC data sets
- Dedicated HLT alignment stream
- Use of mass, vertex constraints and survey information

