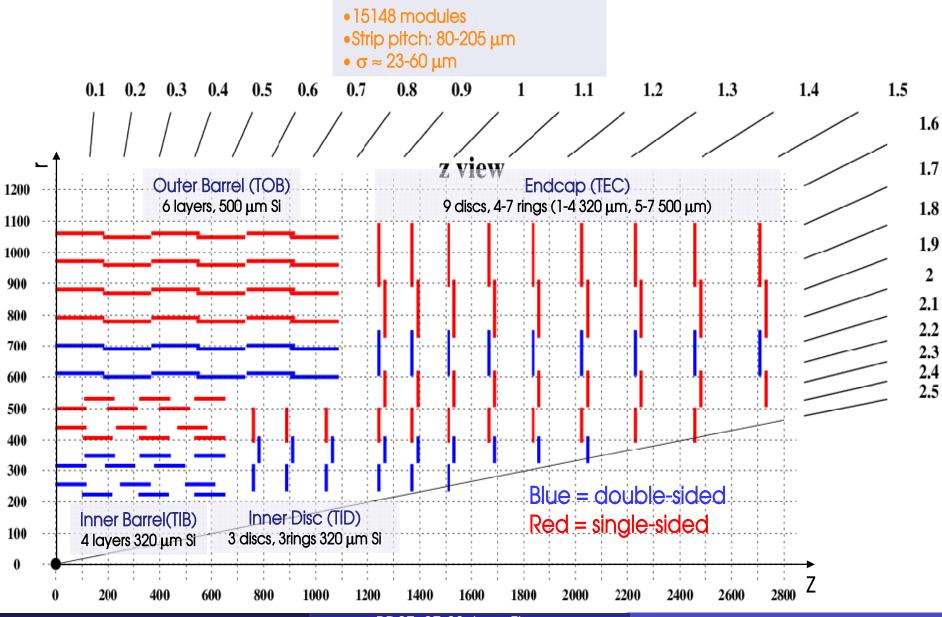
Alignment Strategy for the CMS Silicon Tracker

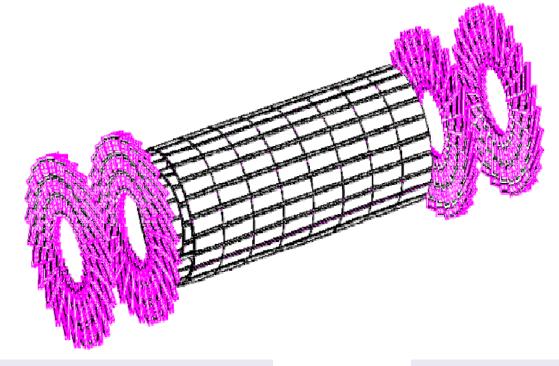
Marco Rovere¹ for the CMS Collaboration ¹Università di Milano-Bicocca & INFN

27-29 June 2007, RD07 Firenze


RD07, 27-29 June Firenze

Outline

- 1. Alignment Challanges at CMS
 - Strip Tracker
 - Pixel Tracker
- 2. Hardware Alignment
- 3. Software tools for alignment
 - The framework simulation of misalignment
 - Alignment Algorithms:
 - HIP & Results
 - Millepede II & Results
 - Kalman Filter & Results
- 4. Conclusions


Alignment Challanges at CMS – Strip Tracker

RD07, 27-29 June Firenze

Alignment Challanges at CMS – Pixel Tracker

General Layout

- active area ~ $1m^2$
- dimensions: 100 cm x 30 cm
- 66*10⁶ channels
- pixel size: 100 μ m (r) x 150 μ m (z)

Hit Resolution

• resolution: 10 μ m (r) x 15 μ m (z)

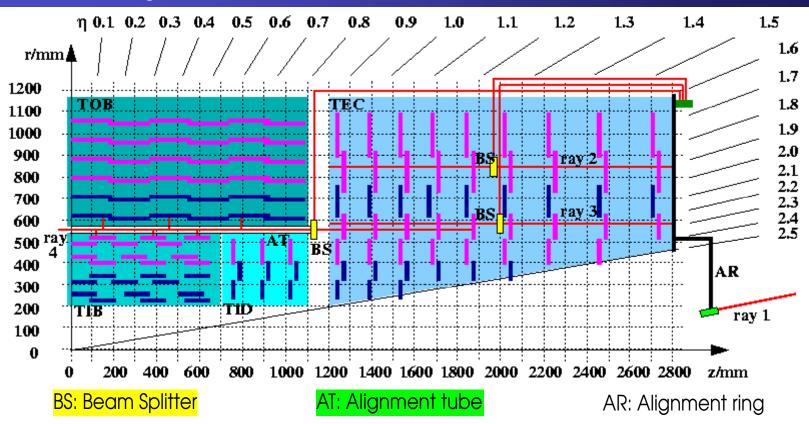
Barrel layers

- r = (4.4;7.3;10.2)cm
- 1200 modules

Endcap disks

- r = 6cm-15cm
- 700 modules

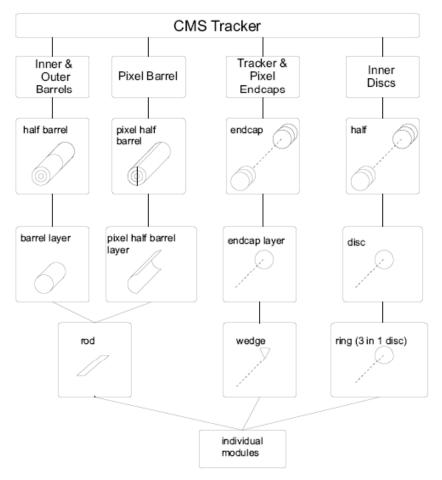
Alignment Challenges at CMS – Summary


- The large number of independent silicon sensors (~15K) and their excellent resolution make the alignment of the CMS strip and pixel trackers a challenging task.
- Knowledge of detector positions should be known at the level of 10 μm in the r- ϕ plane. This level of accuracy can only be reached with a track-based alignment procedure. But...
- ... a more realistic procedure would be:
 - 1. measurement of placement and its precision during assembly of tracking devices, e.g., from photogrammetry and detector position survey measurements
 - 2. measurement of relative positions of sub-detectors using the Laser Alignment System (LAS)
- T.B. alignment 3. track-based alignment

Hardware

alignment

Hardware Alignment: LAS & Survey


•Survey: will provide an initial correction to assumed ideal Tracker geometry. If no complete measurement \Rightarrow an estimate of the placement uncertainty is added to the error of the track hit position leading to an improved efficiency during initial track reconstruction. •Survey&LAS: In order to make efficient pattern recognition for the track reconstruction possible at CMS start-up, it is sufficient that the individual positions of the silicon sensors are known to about 100 μ m. This can be achieved with a combination of survey and LAS measurements.

Software Tools: Simulation of misalignment

To study the impact of Tracker misalignment on track and vertex reconstruction in concrete physics analysis channels, as well as to study track-based alignment algorithms, a realistic model of misalignment effects has been implemented within the standard CMS reconstruction software (CMSSW).

- (Mis)alignment implemented at reconstruction level:
 - "Misalignment tools":
 - Implemented as a hierarchical structure
 - Ability to move and rotate modules or higher level structures

Software Tools: Simulation of misalignment

To study the impact of Tracker misalignment on track and vertex reconstruction in concrete physics analysis channels, as well as to study track-based alignment algorithms, a realistic model of misalignment effects has been implemented within the standard CMS reconstruction software (CMSSW).

 (Mis)alignment implemented at reconstruction level: "Misalignment tools": 			Δx (µm)	Δy (µm)	Δz (µm)	R _z (µrad)	LAS available
 Implemented as a hierarchical structure 	TPB	Dets	13	13	13	0	No
 Ability to move and rotate modules or higher level 		Rods	5	5	5	0	
structures		Layers	10	10	10	10	
 Dedicated "Misalignment Scenarios" 	TPE	Dets	5	5	5	0	No
-		Petals	2.5	2.5	2.5	2.5	
- Short term scenario		Layers	5	5	5	5	
 First data taking (few 100 pb⁻¹) Pixel already aligned 	TIB	Dets	200	200	200	0	Yes
 Strip tracker misaligned, only survey and laser alignment 		Rods	200	200	200	0	
 Long term scenario 		Layers	100	100	500	50	
 Few fb⁻¹ accumulated 	TOB	Dets	100	100	100	0	Yes
• Full alignment performed, residual misalignments ~20 μ m		Rods	100	100	100	0	
• Fast track refit (without redoing pattern recognition)		Layers	70	70	500	90	
 implemented in standard CMS reconstruction 		Dets	100	100	100	0	No
	TID	Rings	300	300	300	0	
software using a common layer of general		Layers	400	400	400	100	
functionality	TEC	Dets	50	50	50	0	Yes
 Management of parameters and covariances 		Petals	100	100	100	0	
 Derivatives wrt track and alignment parameters 		Layers	60	60	500	45	

I/O, Database connection

Software Tools: the Alignment Algorithms

The CMS Collaboration has developed 3 independent (complementary) algorithms to align the tracker

- 1. HIP
- 2. Millepede I&II
- 3. Kalman Filter
- Algorithms are implemented in standard CMS reconstruction software using a common layer of general functionality
 - Management of parameters and covariances
 - Derivatives wrt track and alignment parameters
 - I/O, Database connection

sensor (after many tracks per sensor accumulated)

- V: covariance matrix of measurement

Minimization of track impact point (x) - hit

(m) residuals in local sensor plane as

 χ^2 function to be minimized on each

function of alignment parameters

• Linearized χ^2 solution:

•

- $\quad \delta p \text{ is the vector of alignment parameters,} \\ namely \, \delta p = (\delta u, \, \delta v, \, \delta w, \, \delta \alpha, \, \delta \beta, \, \delta \gamma)$
- J_i : derivative of residuals w.r.t. alignment parameters
- Local solution on each "alignable object"
 - Only inversion of small (6x6) matrices
 - computationally light
- Correlations between modules not included explicitely but ...
- ... implicitely included through iterations

$$\epsilon = \begin{pmatrix} \epsilon_u \\ \epsilon_v \end{pmatrix} = \begin{pmatrix} u_x - u_m \\ v_x - v_m \end{pmatrix}$$

ר†

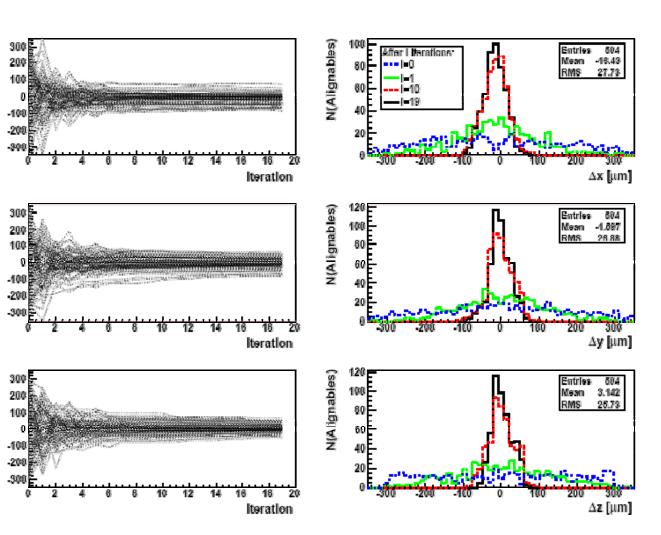
$$\chi^2 = \sum_{i=1}^{N_{\rm hits}} \epsilon_i^T V_i^{-1} \epsilon_i$$

$$J_{i} = \nabla_{\overline{p}} \epsilon_{i} \left(\overline{p} \right)$$

$$\delta \mathbf{p} = \left[\sum_{i=1}^{\mathbf{N}_{\text{hits}}} J_i^T V_i^{-1} J_i\right]^{-1} \left[\sum_{i=1}^{\mathbf{N}_{\text{hits}}} J_i^T V_i^{-1} \epsilon_i\right]$$

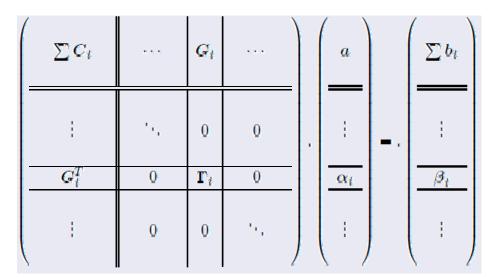
Alignment Algorithms: HIP Results

[m]


ă

∆y [µm]

∆z [µm]



- Standalone alignment of pixel modules
- Minimize influence of misaligned strip detector:
 - refitting only pixel hits of the tracks
 - use momentum constraint from full track (significantly improves convergence)
- Two muons from Z⁰→µ⁺µ⁻ are fitted to common vertex
- Flat misalignment 300μm in x,y,z
- 500K events, 19 iterations
- Resonable convergence, RMS ~25µ m in all coordinates

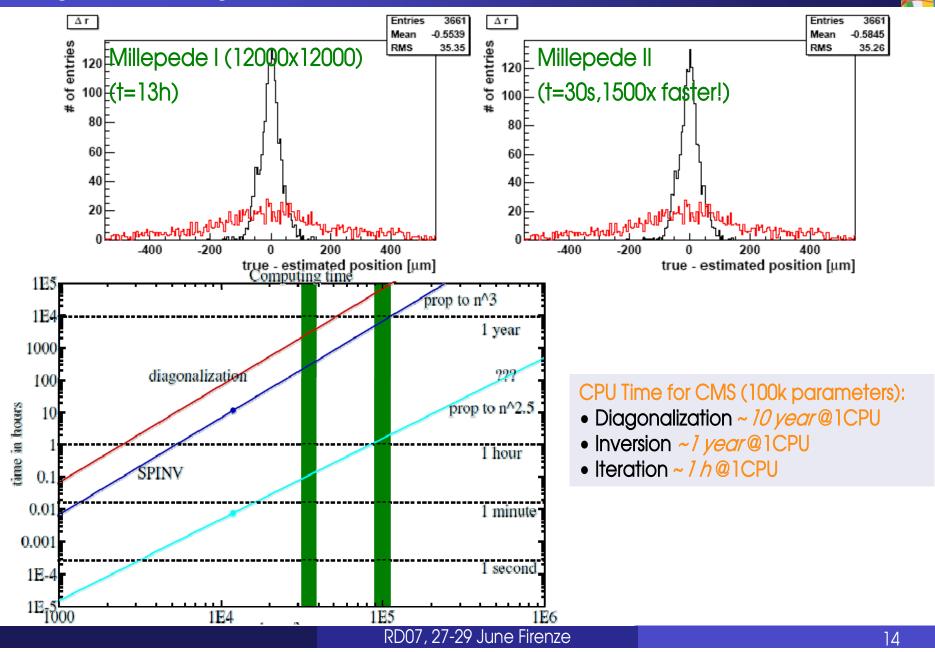
Alignment Algorithms: Millepede I ...

- Millepede is a linear least square method
- The global (alignment) parameters and the local (track) parameters are treated simultaneously
- Unique solution, no iterations.
- Constraints can be implemented via Lagrangian multipliers.
- Initial "knowledge" can be implemented via χ^2 penalties.
- Millepede I algorithm decouples global (alignment) and local (track) parameters.
 - linear equation system with only N (N = number of alignment parameters) needs to be solved!
- Millepede I determines a by inversion of C'
 - The CPU times for inversion scales with N^3 , memory with N^2 .
- Millepede I is limited to $\sim 10^4$ parameters.

 $\left(\begin{array}{c} C' \\ \end{array}\right)\left(\begin{array}{c} a \\ \end{array}\right) = \left(\begin{array}{c} b' \\ \end{array}\right)$

$$C' = \sum_{i} C_{i} - \sum_{i} G_{i} \Gamma_{i}^{-1} G_{i}^{T} \qquad b' = \sum_{i} b_{i} - \sum_{i} G_{i} \left(\Gamma_{i}^{-1} \beta_{i} \right)$$

Alignment Algorithms: ... Millepede II

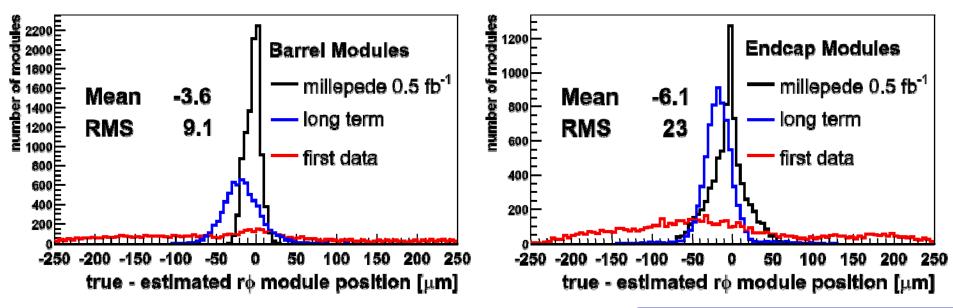

- Millepede II especially developed by <u>Volker Blobel</u> to handle next generations detector needs.
- Millepede II has a new method to solve the matrix equation: it numerically minimises | C'a-b' |.
- The numerical (iterative) method uses the fact that the matrix is sparse: only nonzero elements are stored in double precision.
- Millepede II is faster and can handle a higher number of parameters.

$\sum C_i$	•••	G_{i}		a	$\left(\sum b_{i} \right)$
	14. 14.	0	0	;	 ;
G_i^T	0	Γ_i	0	α_i	β_{i}
1	0	0	54 /		:)

$$\left(\begin{array}{c} C' \\ \end{array}\right) \left(\begin{array}{c} a \\ \end{array}\right) = \left(\begin{array}{c} b' \\ \end{array}\right)$$

$$C' = \sum_{i} C_{i} - \sum_{i} G_{i} \Gamma_{i}^{-1} G_{i}^{T} \qquad b' = \sum_{i} b_{i} - \sum_{i} G_{i} \left(\Gamma_{i}^{-1} \beta_{i} \right)$$

Alignment Algorithms: Millepede I & II Comparison



Alignment Algorithms: Millepede II Results

- Misalignment: Default first data scenario.
- Data sets:
 - 0.5 mio. Z (0.5 fb-1) mass and vertex constraint
 - 25 k cosmics with momentum > 50 GeV
 - Single muons of 1.5 mio. Z
 - ~ 3 mio W (0.5 fb-1) events
- Alignment:
 - All silicon modules (PB,PE,TIB,TID,TOB,TEC)
 - translation and the rotation around normal of sensor.

- Align the full strip and pixel tracker!
- Number of aligned parameter ~ 50K
- CPU time total: 1h:40min
- Use of complementary data sets.
- Utilizing initial knowledge.
- Full alignment procedure tested!

Alignment Algorithms: Kalman Filter

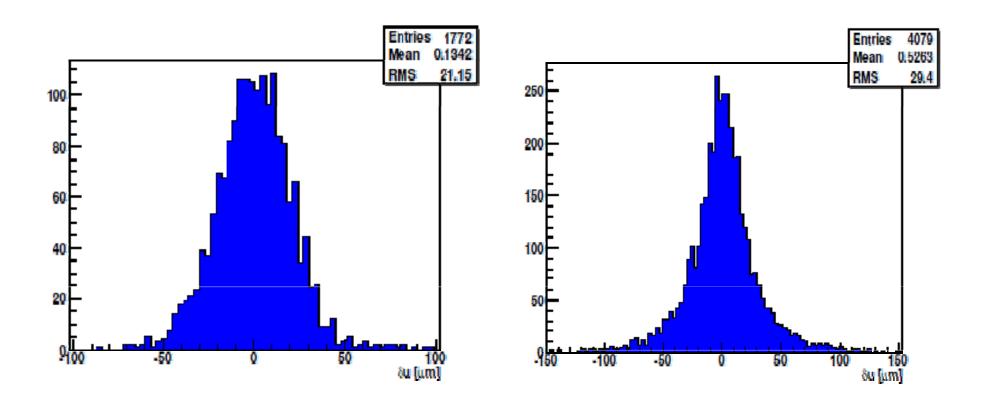
- Method for global alignment derived from Kalman Filter
- How it works:
 - measurements *m* depend via track model *f* not only on track parameters *x*, but also on alignment parameters *d*.

$$m = f\left(x, d\right) + \epsilon$$

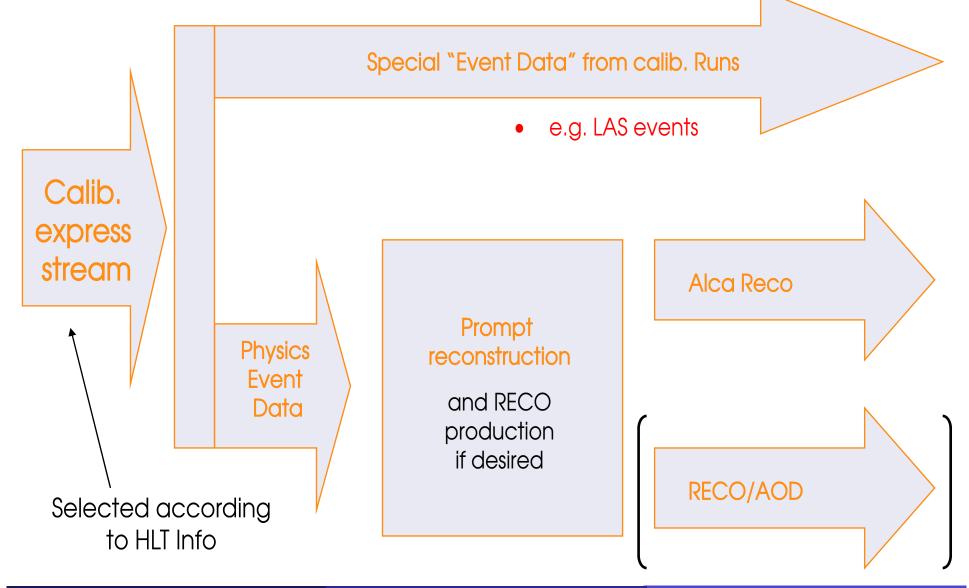
$$\operatorname{Cov}\left(\epsilon\right) = V$$

- Update equation of Kalman Filter:

$$\begin{pmatrix} \hat{d} \\ \hat{x} \end{pmatrix} = \begin{pmatrix} d \\ x \end{pmatrix} + K \left(m - c - Ad - Bx \right)$$


- Iterative: Alignment Parameters updated after each track
- Global: Update not restricted to modules crossed by track
 - Update can be limited to those modules having significant correlations with the ones in current trajectory
 - Requires some bookkeeping
 - No large matrices to be inverted!
- Possibility to use prior information (e.g. survey data, laser al.)
- Can add mass / vertex constraints

Example of TIB(left) and TOB(right) alignment


• use ~75K $Z^{0} \rightarrow \mu^{+}\mu^{-}$ tracks (no mass-constrain applied)

• cpu time ~50 min(left) ~ 90min(right)

Data Flow for Alignment&Calibration

- AICaReco for tracker alignment
 - Reduced data format containing only tracks used for alignment (plus associated hits for refitting)
 - Very little disk space (local disk storage)
 - Fast processing (important especially for iterating algorithms)
- AlCaReco producers
 - Run during prompt reconstruction at Tier-0
 - Read express stream written by HLT
 - Write AICaReco files
 - Functionality:
 - Select appropriate events (e.g. Z $\!\!\!\!\!\!\rightarrow \mu\mu)$
 - Write out reduced information (e.g. only two muon tracks)

Data Samples

Luminosity	10 ³² c	:m ⁻² s ⁻¹	$2x10^{33}$ cm ⁻² s ⁻¹				
Time int. Luminosity	Few weeks	6 months	1 day	Few weeks	One year		
	100 pb ⁻¹	lfb ⁻¹		1fb ⁻¹	10fb ⁻¹		
W±→µ±v	700K	7M	100K	7M	70M		
Z ⁰ →µ⁺µ⁻	100K	1M	20K	1M	10M		

- Collision events
 - High Pt isolated muons from W,Z decays
 - Isolatedhigh pt tracks in min. bias / QCD jet events (at startup)
 - Muons from J/Psi / Upsilon
- Non-collision events
 - Cosmic Muons
 - Beam Halo Muons
- Special events
 - Laser alignment system

Conclusions

- Alignment of the CMS tracker and muon system is a challenge
 - Large number of parameters (~100,000 in tracker)
 - High intrinsic resolution of devices
- A lot of work on track based alignment already done
 - Implementation and further development of 3 different algorithms
 - Alignment studies using various MC data sets
 - Dedicated HLT alignment stream
 - Use of mass, vertex constraints and survey information