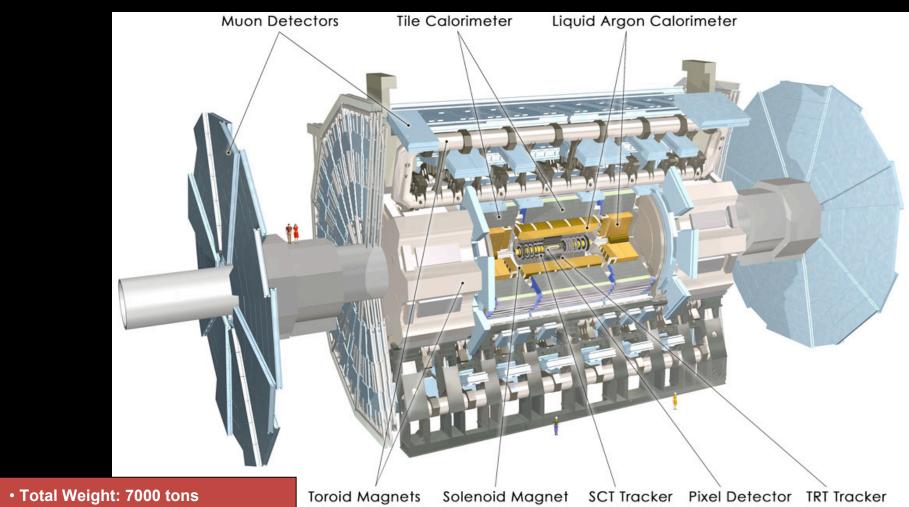
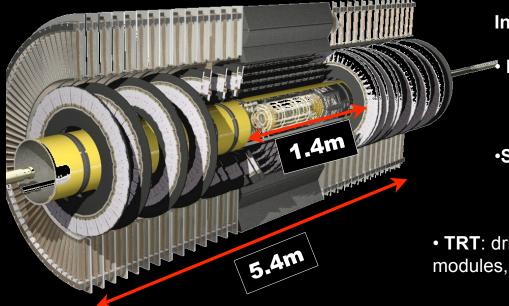


Alignment of the ATLAS Inner Detector


The University of Melbourne On behalf of the ATLAS Inner Detector Alignment Group

FD07 27-29 June 2007 Florence, Italy

ATLAS



- Overall Diameter: 22 m (~72 ft)
 Overall Length: 45 m (~148 ft)
- Magnetic field (solenoid): 2 Tesla

ATLAS Inner Detector

Inner Detector:

PIXEL: Silicon pixel detectors Intrinsic Resolution: Pixel size 50x400µm

Local X ~14 µm Local Y ~115 µm

•SCT: Silicon strip detectors 80µm strip pitch, 40mrad stereo angle

Intrinsic Resolution: Local X ~23 µm Local Y ~580 µm

• TRT: drift-tube system. Limited granularity (barrel modules, end cap disks)

Current Alignment Strategy:

- Perform full alignment of the silicon 1.
- Align TRT modules using tracks from the newly aligned silicon 2.

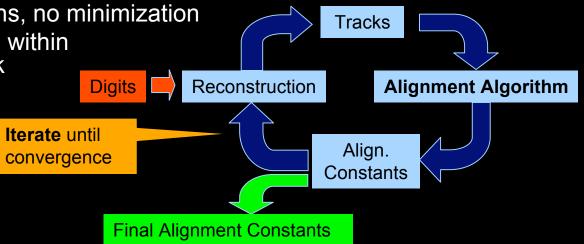
Alternative (under consideration):

1. Do a combined simultaneous alignment of both subsystems (TRT can help to constrain momentum)

The ATLAS Silicon Detector

TLAS Silicon Dete	ector:				Province 198	
SCT End Caps (2x9 disks)			H			
PIXELs End 0 (2x3 disks			CT barr			rels (3 layers)
SCT barrels (4 layers)						
	Barrel End		Сар			
Detector	PIXELs	SCT	PIXELs	SCT	3 translations	
Layers/disks	3	4	2x3	2x9	& 3 rotations	
Modules	1456	2112	2x144	2x988	of each module	
Subtotal	3568		2264			
Total	5832					

In total we have to deal with 34,992 DOF! The challenge is to align the detector daily to ensure we have accurate results



- Alignment is determination of the position and orientation of the detector components.
 - Initially required due to finite accuracy of the detector assembly
 - Also required to account for detector deformation due to temperature, magnetic field, material load
- Sources of knowledge for alignment
 - Assembly knowledge: construction precision and surveys, for initial position corrections and errors (~100µm SCT, ~30µm Pixel)
 - Online monitoring and alignment: lasers, cameras, before and during runs
 - Offline track-based alignment: using physics and track residual information (~10um, below the intrinsic resolution of the detector)
 - Offline monitoring: using physics, track and particle ID parameters
- The use of all possible sources of information is vital to ensure the alignment of your detector is optimal

ATLAS ID Track-based Alignment

- Intrinsic alignment of Silicon and TRT, Si+TRT, all rely on minimizing residuals
- Global χ^2 :
 - minimization of χ^2 fit to track and alignment parameters
 - 6 DoF, correlations managed, small number of iterations
 - Inherent challenge of large matrix handling and solving
- Local χ^2 :
 - similar to global χ^2 , but inversion of 6x6 matrix/module
 - 6 DoF, no inter-module or MCS correlations
 - large number of iterations
- Robust Alignment:
 - Centre residuals and overlap residuals
 - 2-3 DoF, many iterations, no minimization
- All algorithms implemented within ATLAS software framework and share common tools
- Able to add constraints from physics & external data

 $\frac{d\chi^2}{d\chi^2}$

The Global χ^2 Approach

Method consists of minimizing a giant χ^2 resulting from a simultaneous fit of all particle trajectories and alignment parameters:

$$\chi^2 = \sum_{tracks} r^T V^{-1} r \qquad r(\pi, a, m)$$

- r = residuals
- V = covariance matrix
- = track parameters

dr

 $d\pi_0$

- = alignment parameters
- m = measurement

Use the linear expansion (assume all second order derivatives negligible).

$$\frac{d\chi^2}{d\pi} = 0 \rightarrow \qquad \pi = \pi_0 + \delta\pi = \pi_0 - \left(\frac{\partial e^T}{\partial \pi_0}V^{-1}\frac{\partial e}{\partial \pi_0}\right)^{-1}\frac{\partial e^T}{\partial \pi_0}V^{-1}r(\pi_0, a)$$

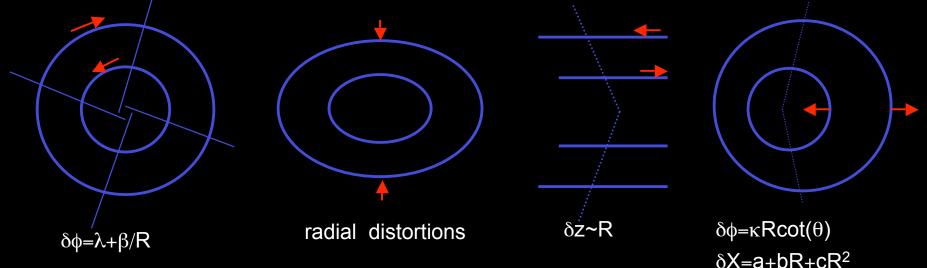
 $\left(\sum_{r=1}^{\infty} \frac{dr^T}{da_0} V^{-1} \frac{dr}{da_0}\right) \delta a + \sum_{r=abc} \frac{dr^T}{da_0} V^{-1} r(\pi_0, a_0) = 0$

Key relation!

$$\frac{dr}{da} = \frac{\partial r}{\partial a} + \frac{\partial r}{\partial \pi} \frac{d\pi}{da}$$

Alignment Parameters are given by:

$$\delta a = -\underbrace{\left(\sum_{tracks} \frac{\partial r^{T}}{\partial a_{0}} W \frac{\partial r}{\partial a_{0}}\right)}_{\mathcal{M}} \stackrel{-1}{\underbrace{\sum_{tracks} \frac{\partial r^{T}}{\partial a_{0}} Wr(\pi_{0}, a_{0})}_{\mathcal{V}}}_{\mathcal{V}}$$
$$W \equiv V^{-1} \hat{W} \equiv V^{-1} - V^{-1} E (E^{T} V^{-1} E)^{-1} E^{T} V^{-1}$$
$$E = Circle response to Millipsode of CM2$$

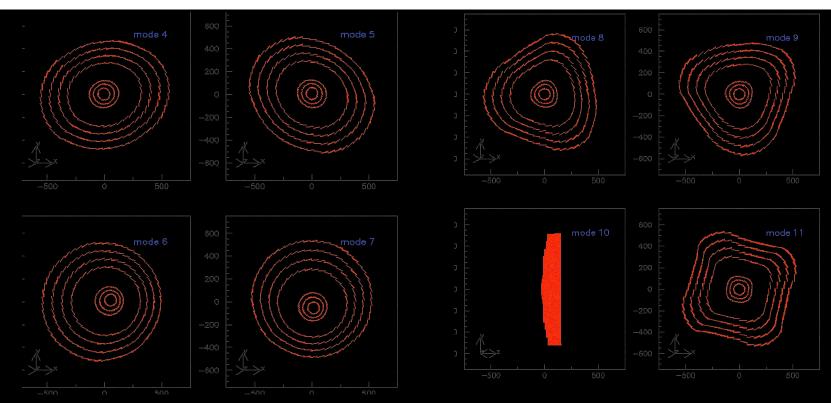

Where

Similar approach to minipede

χ^2 Invariant Modes

Certain transformations leave χ^2 unchanged (the so called weak modes).

Need tools to tackle these such as:


- Requirement of a common vertex (VTX constraint),
- Constraints on track parameters or vertex position (external tracking, calorimeters, resonant mass, ...)
- Off-beam axis tracks (cosmic tracks, beam halo)
- External constraints (hardware systems, mechanical constraints, ...).

Easily incorporated in the algorithms (for ex, global χ^2)

More on Weak Modes

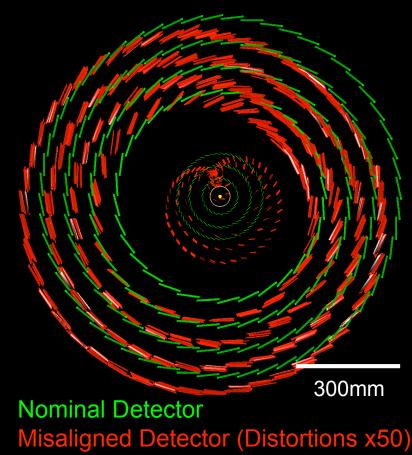
Weak modes contribute to the lowest part of the eigenspectrum.
These deformations lead directly to biases in physics (systematic effects).
Understanding these effects is of the utmost importance

Solving Large Degrees of Freedom

- ATLAS Inner Detector has a large system to solve (35k DoF)
- Limiting factors:
 - Size: Full ID needs ~8GB for handling the alignment matrices
 - Precision: Matrices can have large condition numbers
 - Execution time: Single-CPU machines with non-optimized libraries take days
- Currently solving using
 - 64-bit parallel computing
 - Solving full pixel subsystem (12.5k DoF) on 16 nodes takes only 10mins (~7hrs on a single cpu,diagonalisation)
 - Single CPU solutions possible
 - already implemented MA27 in Athena: takes 24 sec for 12.4k DoF and for the full 35k DoF less than 10mins,
 - Other techniques tested Many solvers produce similar results

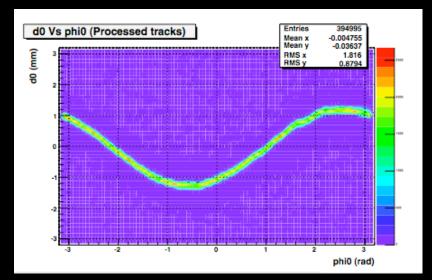
ATLAS CSC Challenge

- Misalign the whole detector quite badly
- Assuming no knowledge of the misalignments try to align your detector
- Aim to test performance and understand needs for real data conditions

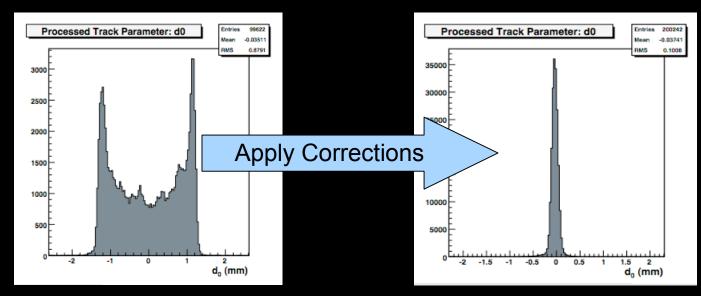

LEVEL 1 TRANSFORMS						
System	Х	Y	z	Alpha	Beta	Gamma
Pixel detector	+0.60	+1.05	+1.15	-0.10	+0.25	+0.65
SCT Barrel	+0.70	+1.20	+1.30	+0.10	+0.05	+0.80
SCT Endcap A	+2.10	-0.80	+1.80	-0.25	0	-0.50
SCT Endcap C	-1.90	+2.00	-3.10	-0.10	+0.05	+0.40

Level of applied misalignments:

- Modules = Level 3
- Layers = Level 2 (barrel layers or disks)
- Subdetectors = Level 1 (whole barrel or EC)

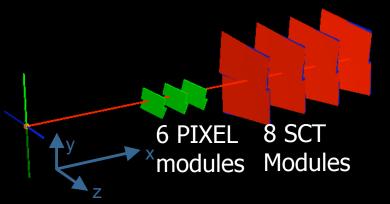

From detector assembling and installation:

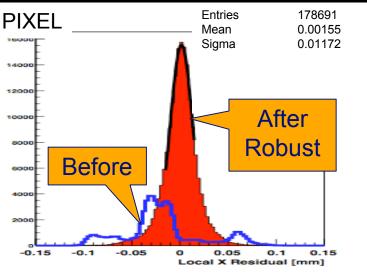
Misalignments largest on L1 and smallest on L3 \Rightarrow Alignment strategy: L1 \Rightarrow L2 \Rightarrow L3



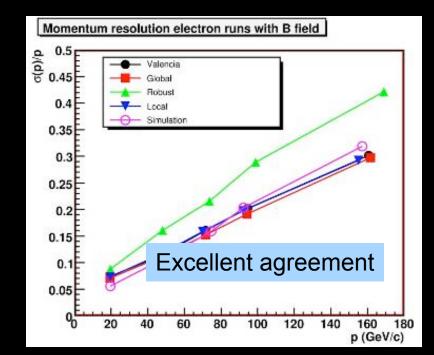
A taste of the CSC

$$d_0 = x_0 sin\phi_0 - y_0 cos\phi_0$$


	Fit (mm)	Pixel CSC level 1 (mm)
x0	0.660	0.60
у0	1.042	1.05

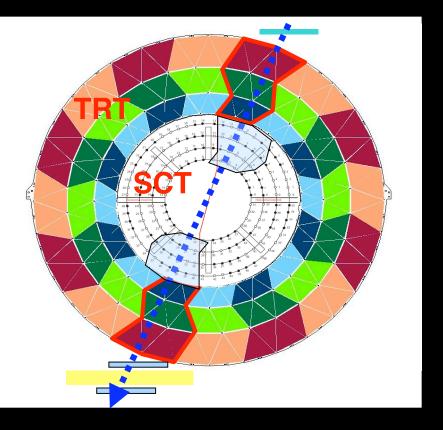


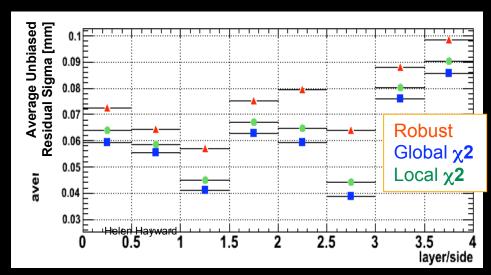
ATLAS ID Alignment: CTB Performance


Overall residual resolution obtained: Pixel residual sigma ~10μm, SCT ~ 20μm

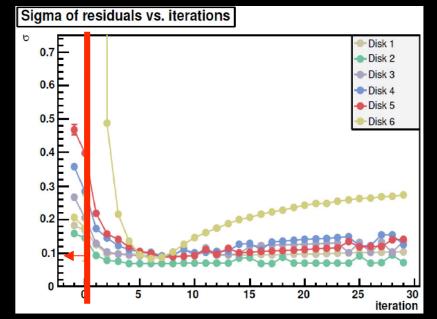
First real data from ID at H8 beam in 2004

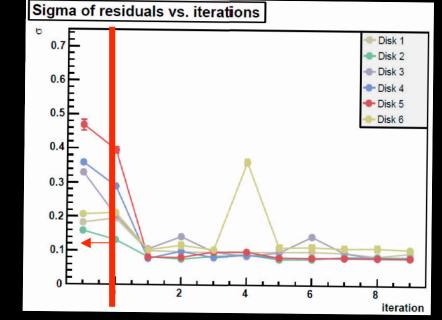
- Large statistics of e^+/e^- and π (2-180 GeV)
- B-field on-off runs


• Results from various algorithms have been combined: reached an alignment precision sensitive to effects of a few microns!



ATLAS ID Alignment: SR1 Cosmics Performance


- Surface runs in spring 2006: ~400k Barrel cosmics recorded (22% of SCT, 13% of TRT detector used)
- No B-field! No momentum measurement! MCS important ~<10 GeV, need to deal with larger residuals than CTB


ATLAS ID Alignment: SR1 Cosmics Performance

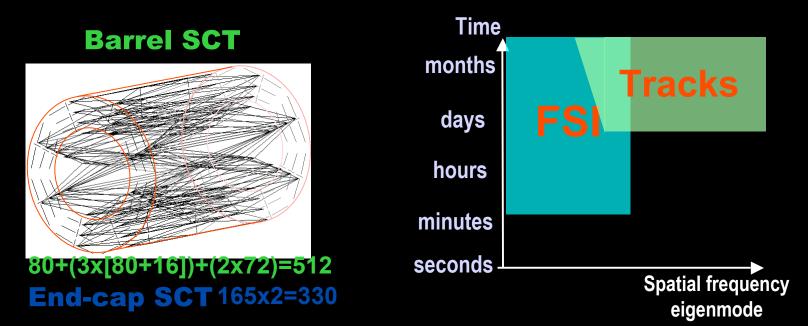
Detector End Caps

Survey Information

Local χ^2

Survey Information

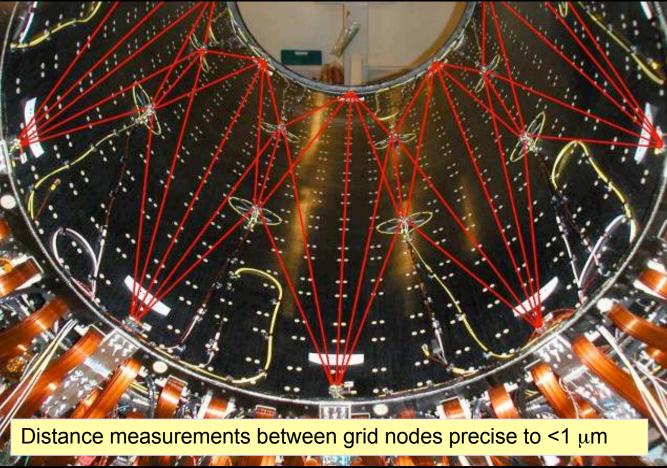
Global χ^2


ATLAS ID optical alignment (FSI)

16

- Frequency Scanning Interferometer: Geodetic grid of 842 simultaneous length measurements (precision <1μm) between nodes on SCT support structure.
- Grid shape changes determined to $< 10\mu m$ in 3D.
- Time + spatial frequency sensitivity of FSI complements track based alignment:
 - Track alignment average over ~24hrs+.
 high spatial frequency eigenmodes, "long" timescales.
 - FSI timescale (~10mins)

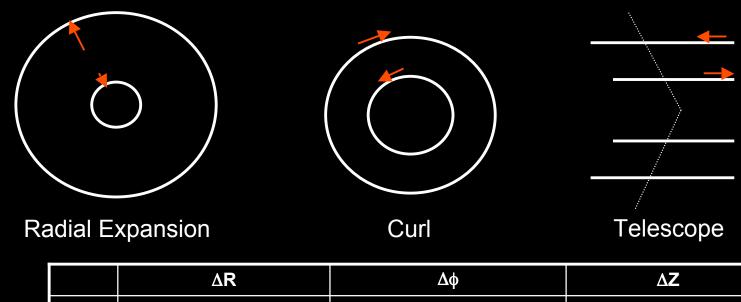
low spatial frequency distortion eigenmodes -> weak global modes!


• Software principles already studied, implementation to be finalized!

ATLAS FSI on detector

FSI will be used intensively before and during the early runs and the track-based alignment and FSI interplay will be tested. Stability of the detector will indicate how frequently data needs taken during normal operation.

- Three track based alignment algorithms have been successfully developed
- Tests on simulated and real data have given positive results
- A lot has been learned, fixed, improved, but there is still more to do
- FSI is getting ready to monitor SCT stability during commissioning with cosmics and early accelerator data
- A variety of source of information will be required to align the ATLAS Inner Detector
- We will be ready for real data taking



ATLAS A

Backup Slides

What happens if we don't have correct alignment

	ΔR	$\Delta \phi$	ΔZ
R	Radial expansion (distance scale)	Curl (charge asymmetry)	Telescope (COM boost)
φ	Elliptical	Clamshell	Skew
	(vertex mass)	(vertex displacement)	(COM energy)
Z	Bowing	Twist	Z expansion
	(COM energy)	(CP violation)	(distance scale)

- A number of mathematical techniques can be used to help constrain the system
 - Lagrange multipliers can be used to restrict global rotations however they increase the size of matrix.
 - Additional bilinear terms can be used to give each parameter an error, unfortunately this will make the matrix dense.
- Constraints on track parameters or vertex position (external tracking (TRT, Muons), calorimetry, resonant mass, etc.)
- Cosmic events
- External constraints on alignment parameters (hardware systems, mechanical constraints, etc).