Florence, 29th June 07

Characterization of Avalanche Photo Diodes (APDs) for the Electromagnetic Calorimeter in the ALICE experiment

Paola La Rocca

University and INFN Catania

Florence, 29th June 07

Outline

- The ALICE experiment at LHC
- ALICE ElectroMagnetic CALorimeter
- APD testing station in Catania
- Test results
- Conclusions and Perspectives

The Large Hadron Collider (LHC) @ CERN

Alice Physics

ALICE will track and identify products from pp and nucleus-nucleus collisions in a large multiplicity environment (dN_{ch}/dy up to 8000).

Main tasks:

studying QCD matter under extreme conditions

• studying the phase transition between confined matter and Quark-Gluon Plasma (QGP)

The ElectroMagnetic CALorimeter

ALICE Calorimeters: PHOS & EMCal

Florence, 29th June 07

EMCal design is heavily influenced by its integration within the magnet

It provides a partial back-to-back coverage with the PHOS Spectrometer

EMCal Physics Motivation: jet study

The combination of the EMCal with the unique tracking and particle ID capabilities of ALICE enable the most extensive measurements of jet quenching at the LHC

Jet : A fast quark or gluon plus its radiation (theory). Collimated bundle of particles with high p_T (experiment).

Jet quenching : Change of the jet properties when traversing a colored medium with respect to those in vacuum.

7

Florence, 29th June 07

EMCal Physics Performance / 1

EMCal provides :

• High p_T trigger

Improved jet reconstruction up to 200 GeV

Most probable measured fraction of jet energy: ---- below 20% ---- about 50% ---- about 90%

EMCal Physics Performance /2

γ/π⁰ discrimination (direct photon measurements)

Shape analysis + invariant mass

• e⁻/π⁻ discrimination (Heavy Quark Jets)

Elementary Module : Towers

- •77 alternating layers of Pb and polystyrene based scintillator
- Radiation Length ~ 20 X₀
- Front dimensions 6×6 cm²
- Design resolution: $\sigma_{E}/E \sim 1\% + 8\%/\sqrt{E}$

Scintillation photons produced in each tower are collected by an array of 36 optical fibres (Shashlik fiber geometry)

EMCal Planning and Organization

 Several US and EU institutes involved in the EMCal project
(Italy : Frascati, Catania)

- Current expectations : Sept Oct 2007 beam tests at PS and SPS
- Catania Task : testing activity on ~3000 APDs
- Actually tested a batch of 80 APDs

Hamamatsu APDs Si APS S8664 series

R&D Activity by the CMS Coll. & Hamamatsu Photonics

To be used in EMCal calorimeter in a similar way that is already used by PHOS (different temperature and gain)

Parameter	S8664-55 APD		
Active area	$5 \times 5 \text{ mm}^2$		
Op. voltage	$\sim 380 V$		
Capacitance	70 pF		
Serial resist.	3Ω		
Dark current	< 10 nA		
Quantum eff.	72% for 420 nm		
$dM/dV \times 1/M$	3%/V		
$\mathrm{d}M/\mathrm{d}T imes 1/M$	− 2.2%/°C		

EMCal Readout Electronics

EmCal electronic requirements are quite similar to those of PHOS

⇒ PHOS readout electronics has been adopted for the EmCal readout (with minor modifications)

DESIGN SPECIFICATIONS:

- Large dynamic range ~ 14bits: dual gain range shapers, flash ADC
- Fast trigger input based on overlapping tower energy sums
- Individual APD bias control for gain matching

• Appropriate timing for low energy neutron / antineutron rejection

EMCal Readout Electronics

APDs Testing Activity

- > APD Calibration is important to:
- Improve the EMCal energy resolution
- Provide a good L0 and L1 trigger
- ≻ Tasks:
- Selecting APDs according to their performances
- Measuring the APD gain dependence on the bias voltage (Voltage Coefficient dM/dV \times 1/M)
- Evaluating the nominal voltage setting for the APD to obtain gain M=30 (instead of 50 as for PHOS)
- Measuring the APD gain dependence on the operating temperature (Temperature Coefficient dM/dT \times 1/M)

Testing set-up / 2

Oscilloscope Measurements

Florence, 29th June 07

Use of oscilloscope histogramming capabilities to perform measurements

APD Gain dependence on bias voltage

M(V) = H(V) / H(plateau)

Parameterization with an exponential plus a constant:

APD gain measurement at + 25 °C

Florence, 29th June 07

 $M(V) = p_0 + p_1 \exp(p_2 V)$

10 🚔

APD Gain dependence on temperature /1

Bias Voltage [V]

APD Gain dependence on temperature/2

The gain decreases when the temperature increases.

- Small fluctuations from APD to APD

- Realistic measurement of the temperature (thermal equilibrium and thermocouple position)

24

Temperature coefficient

Gain of 80 APDs for a fixed HV

Considerable differences in individual APD gain exist for production batches when the same reverse-bias voltage is applied at an operating temperature of +25° C

26

Florence, 29th June 07 RD07 Distribution V₃₀ V_{30} : Voltage at which gain M = 30 At room temperature (+25° C) V_{30} value should be lower than 400 V V30 distribution hv30 Entries 79 10 365.3 Mean 15.94 RMS The safety limit 9 changes depending 8 on the operating temperature 6E **9**20 410 420 390 400 330 340 380 350 360 370 27 V30

V₃₀-V_{Breakdown} Correlation

V30 voltage is highly correlated with V50 and with V_{Breakdown}

It should be safe to operate the APDs up to 400V without too much care about possible breakdown.

Florence, 29th June 07

EMCal Calibration

1. APD pre-Calibration

Amp vs CSP # - High gain Run: 7219, configuration_0271.txt Entries 23977 Mean (ADC counts) 1000 800 **Resolution** ~ 5% 600 400 200 3500 2000 2500 3000 1000 1500 CSP channel

An example: the PHOS Calibration (H. Müller, J. Hamblen, L. Benhabib)

Before calibration

After calibration

EMCal Calibration

2. Cosmic Ray Calibration

(relative calibration of individual module better than 5%)

- (2,12)	Run	17264, Ev	vent 380 ,	Fri Jun	15 00:01	:55 2007	, Histogr	am Max:	567	- (12,12)
,	-			-		-	-			-
	- [<mark>(3,13)</mark> 	- (4.13) 	(8:13)		- (7:13)	- (8:13)		- (10:13)	= [(††;†3) = = = =	
	- <mark>(3.14)</mark> 	- (4.14) 	(8:14)	- (6.14)	- (7.14) 	- (8.14)		- (10:14)	- (†1,14) 	-
(2.15)	- (<mark>3.15)</mark> 	- (4.15) 	(8.16)	- (6.15)	- (7:15)	- (8:16)	- (9.15) 	- (10:18)	- [(11,18) 	-
- (2.16)	- (3.16)	- (4,16)	(5.16)					- (10,18)	- ((11,16) 	- (12,18)
- <mark>(2,17)</mark> 	- <mark>(3;17) - </mark>				$\mathbf{\nabla}$				- [(11,17) 	(12,17)
				(<mark>6.18)</mark>		- (8,18) 	- <mark>(9.18)</mark> 	(10;18)	- [(11.18) 	- (12,18)
- (2,19) - (- <mark>(3.19)</mark> -	- (4,19)	(5:19)	- (6:19)	- (7.19)	- <mark>(8,19)</mark> -		- (10, 19)	- [(11,19) 	- (12;19)
- (2:20)	- <mark>(3.20)</mark> 	- (4.20) - - -	(5.20)	(6:20)	- (7:20)	(8:20)	(9:20)	- (10,20)	- (11:20) 	- (12,20)
- (2.21)	- (3.21)	- (4:21) 	(8.21)	(6.21)	(7:21)	(8.21)	(9:21)	- <mark>(10,21)</mark> 	- (11.21) 	
- (2.22)	- <mark>(3.22)</mark> 	- (4.22) 	- (5.22)	- (6.22) 	(7:22)	- <mark>(8,22)</mark>	- <mark>(9.22)</mark> 		- [(11.22) 	- (12,22)

(H. Müller, J. Hamblen, L. Benhabib)

3. In-beam MIP, Electron and π^0 Calibrations

Conclusions and Perspectives

Present Status:

- A working testing station has been set up
- First results of the APD characteristics fits the experimental requirements of the EMCal
- A first batch of 80 APDs analyzed

In the future:

- Sept Oct beam tests
- Writing a common protocol for the preparation and testing of APDs
- Starting the testing activity for APD mass production

Radiation Hardness / 1

CMS collaboration studied extensively the radiation damage in S8664 APDs

 Irradiation for about 2 h with a 2 nA beam of 64 MeV protons (equivalent to a neutron flux of about 2×10¹³ neutrons/cm² – the expected total neutron fluence after 10 years of LHC operation in the central section of the calorimeter)

• annealing for a week at a temperature of 90°C and

Radiation Hardness /2

Radiation in ALICE detectors in 10 years running scenario

Table 5: Neutron fluence in mid-rapidity detectors.

Detector	$n-\Phi [cm^{-2}]$	$n-\Phi [{\rm cm}^{-2}]$	$n-\Phi [cm^{-2}]$	$n-\Phi [{\rm cm}^{-2}]$
	IP Collisions	Beam-Gas	Halo	Total
SPD1	$8.0 \cdot 10^{11}$	$1.8\cdot 10^{10}$	$3.1\cdot10^{10}$	$8.5 \cdot 10^{11}$
SPD2	$5.6 \cdot 10^{11}$	$1.4\cdot 10^{10}$	$2.4\cdot10^{10}$	$6.0\cdot10^{11}$
SDD1	$4.5 \cdot 10^{11}$	$1.4\cdot 10^{10}$	$2.2 \cdot 10^{10}$	$4.9 \cdot 10^{11}$
SDD2	$4.2 \cdot 10^{11}$	$1.4\cdot 10^{10}$	$2.0\cdot10^{10}$	$4.5 \cdot 10^{11}$
SSD1	$4.0 \cdot 10^{11}$	$1.3\cdot 10^{10}$	$2.0\cdot10^{10}$	$4.3\cdot10^{11}$
SSD2	$3.9 \cdot 10^{11}$	$1.2\cdot 10^{10}$	$1.8\cdot10^{10}$	$4.2 \cdot 10^{11}$
TPC(in)	$3.6 \cdot 10^{11}$	$1.2\cdot 10^{10}$	$1.7\cdot10^{10}$	$3.9 \cdot 10^{11}$
TPC(out)	$2.4 \cdot 10^{11}$	$9.0\cdot10^9$	$5.6\cdot10^9$	$2.5\cdot 10^{11}$
TRD	$1.5 \cdot 10^{11}$	$6.0\cdot10^9$	$3.2 \cdot 10^{9}$	$1.6 \cdot 10^{11}$
TOF	$1.0 \cdot 10^{11}$	$4.7\cdot 10^9$	$2.4 \cdot 10^{9}$	$1.1 \cdot 10^{11}$
PHOS	$8.0 \cdot 10^{10}$	$3.4\cdot 10^9$	$2.2 \cdot 10^{9}$	$8.6 \cdot 10^{10}$
HMPID	$8.0\cdot10^{10}$	$3.4\cdot 10^9$	$2.2\cdot 10^9$	$8.6 \cdot 10^{10}$

Detector	Dose [Gy]	Dose [Gy]	Dose [Gy]	Dose [Gy]	
	IP Collisions	Beam-Gas	Halo	Total	
SPD1	2000	250	500	2750	
SPD2	510	48	120	680	
SDD1	190	12	45	250	
SDD2	100	2.4	13	120	
SSD1	40	1.2	7	50	
SSD2	26	0.6	2.5	30	
TPC(in)	13	0.25	2.9	16	
TPC(out)	2	0.05	0.2	2.2	
TRD	1.6	0.03	0.16	1.8	
TOF	1.1	0.03	0.1	1.2	
PHOS	0.5	0.01	0.04	0.5	
HMPID	0.5	0.01	0.04	0.5	

Table 4: Doses in mid-rapidity detectors.

Energy Resolution

Statistics provided by Hamamatsu / 1

1st batch of 100 APDs

Florence, 29th June 07

Statistics provided by Hamamatsu /2

The breakdown voltage is highly correlated with V50

It should be safe to operate the APDs up to 400V without too much care about possible breakdown.