## High frequency stepdown DC-DC converter with switched capacitors

L.Carraresi, S.Conti, G.Parrini

Physics Department and INFN, Firenze (I)

This work is part of the INFN DACEL program (BA-BO-FI-PD-TO)

## Overview

(1) Why is it necessary?

- The realized DC-DC converter(s)
- The power transfer efficiency
- The model of $\eta_{\text {voltage }}$ and the prototype efficiency measurements

Q Conclusions

## About power distribution at sLHC

Presently long cables are used to bring the low voltages ( 2.5 V and 1.5 V ) to the detectors. The voltages are remotely regulated with long sense wires.
The total current flows inside the long cables and a lot of power get dissipated there (30\%).
This will be worse at sLHC because of the expected higher number of detectors channels ( total current higher) and lower Vdd. We propose the introduction of "new" techniques to limit the use of Cu cables with their power loss (cooling) and high cost.

The choice is mainly among common techniques but to be used in a not standard environment: high magnetic field ( $B>1 T$ ), high radiation, high density of electronics.

The DC-DC conversion from "high" voltages and low currents, to lower voltages and higher currents, implies the reduction of cables material and related power loss. The efficiency of the regulators is an important issue because the all "unconverted" power will be dissipated close to the detector. Others issues are the services required by the $D C-D C$ regulators and their frequency of operation.

$$
\text { rd07 Conference - } 3 \text { - 29th June } 2007 \text { Florence, Italy }
$$

## The present DC-DC converter(s)

The present work is the experimental study of two prototypes of switched capacitors converter: $1.25 \mathrm{~V}, 2.5 \mathrm{~V}$ both with current up to 1.5 A .

The two prototypes (same architecture) have been assembled on small PCBs with commercial SMDs. The absence of commercial power Mosfet with floating body has imposed to use diodes in place of few transistors with an additional loss of efficiency (due to the $\mathrm{V} \gamma$ ), especially at 1.25 V . This, however, does not limit the understanding of the general behavior of the converter.

Our aim is to investigate the dependance of the conversion efficiency with the frequency. We strongly believe that the DC-DC regulators must be operated at frequencies higher than the bandwidth of the signal electronics (few MHz ) to preserve the quality of the signals.

## "charge pump" regulator: general scheme



## phase 1: <br> series capacitors charge

phase 2:
parallel capacitors discharge

$$
V_{i n} \approx n \times V_{o u t}+\frac{I_{o u t}}{f \times C_{s t}}
$$

## minimum

overvoltage $\approx n \times \Delta V$

$$
V_{\text {out }}\left(n, I_{\text {out }}, V_{\text {in }}, f\right)
$$

present prototypes:

$$
n=4, C_{s t} \approx 470 n F, C_{\text {load }} \approx 220 \mu F\left(\gg C_{s t}\right)
$$

$$
\text { rd07 Conference - } 5 \text { - 29th June } 2007 \text { Florence, Italy }
$$

switches and capacitors network
$N_{\text {switches }}=(3 \times n)-1, N_{\text {switches }}=11$ for $n=4$

$C_{s t}=470 \mathrm{nF}$ ( ceramic "Kemet")
$C_{\text {load }}=220 \mu \mathrm{~F}$ ( tantalum "Kemet")
used components.....

```
pMOS
SI2303BDS Vds-max =30V
"Vishay"
Ron~0.2\Omega@Vgs\approx-5V
```



## prototype schematic


rd07 Conference - 8-29th June 2007 Florence, Italy

## prototype schematic


rd07 Conference - 8-29th June 2007 Florence, Italy

## prototype schematic


rd07 Conference - 8-29th June 2007 Florence, Italy

rd07 Conference - 8 - 29th June 2007 Florence, Italy

## Power efficiency : definition

$$
\eta=\frac{P W R_{\text {out }}}{P W R_{\text {in }}+P W D_{d r}}=\frac{P W R_{\text {out }}}{P W R_{\text {in }}} \times \frac{P W R_{\text {in }}}{P W R_{\text {in }}+P W R_{d r}}
$$

| PWR $_{\text {in }}$ | input power |
| :--- | :--- |
| PWR $_{\text {out }}$ | output power |
| PWR $_{\mathrm{dr}}$ | power to <br> operate the <br> switches |

$\eta_{c}$ can be written as : $\quad \eta_{c}=\frac{P W R_{\text {out }}}{P W R_{\text {in }}}=\frac{V_{\text {out }}}{V_{\text {in }}} \times \frac{I_{\text {out }}}{I_{\text {in }}}$
... or even better $\quad \eta_{c}=\left(\frac{n \times V_{\text {out }}}{V_{\text {in }}}\right) \times\left(\frac{I_{\text {out }}}{n \times I_{\text {in }}}\right)=\eta_{\text {volage }} \times \eta_{\text {current }}$

$$
\begin{aligned}
& \eta_{\text {voltage }} \leq 1(1 \text { is a limit case }) \\
& \eta_{\text {current }} \leq 1(1 \text { is the theoretical case })
\end{aligned}
$$

n is the conversion factor: 4, in our regulator rd07 Conference - 9-29th June 2007 Florence, Italy

## Power efficiency : definition

$$
\eta=\frac{P W R_{\text {out }}}{P W R_{\text {in }}+P W D_{\text {dr }}}=\frac{P W R_{\text {out }}}{P W R_{\text {in }}} \times \frac{P W R_{\text {in }}}{P W R_{\text {in }}+P W R_{d r}}
$$

| PWR $_{\text {in }}$ | input power |
| :--- | :--- |
| PWR $_{\text {out }}$ | output power |
| PWR $_{\mathrm{dr}}$ | power to <br> operate the <br> switches |

conversion process
$\eta_{c}$ can be written as:

$$
\eta_{c}=\frac{P W R_{\text {out }}}{P W R_{\text {in }}}=\frac{V_{\text {out }}}{V_{\text {in }}} \times \frac{I_{\text {out }}}{I_{\text {in }}}
$$

... or even better $\quad \eta_{c}=\left(\frac{n \times V_{\text {out }}}{V_{\text {in }}}\right) \times\left(\frac{I_{\text {out }}}{n \times I_{\text {in }}}\right)=\eta_{\text {volage }} \times \eta_{\text {current }}$

$$
\begin{aligned}
& \eta_{\text {voltage }} \leq 1(1 \text { is a limit case }) \\
& \eta_{\text {current }} \leq 1(1 \text { is the theoretical case })
\end{aligned}
$$

$n$ is the conversion factor: 4, in our regulator rd07 Conference - 9-29th June 2007 Florence, Italy

## Power efficiency : definition


conversion process
$\eta_{c}$ can be written as:

$$
\eta_{c}=\frac{P W R_{\text {out }}}{P W R_{\text {in }}}=\frac{V_{\text {out }}}{V_{\text {in }}} \times \frac{I_{\text {out }}}{I_{\text {in }}}
$$

... or even better $\quad \eta_{c}=\left(\frac{n \times V_{\text {out }}}{V_{\text {in }}}\right) \times\left(\frac{I_{\text {out }}}{n \times I_{\text {in }}}\right)=\eta_{\text {volage }} \times \eta_{\text {current }}$

$$
\begin{aligned}
& \eta_{\text {voltage }} \leq 1(1 \text { is a limit case }) \\
& \eta_{\text {current }} \leq 1(1 \text { is the theoretical case })
\end{aligned}
$$

n is the conversion factor: 4, in our regulator rd07 Conference - 9-29th June 2007 Florence, Italy

## $\eta_{\text {voltage }}$ : voltage efficiency

From slide 5 the input voltage necessary for provide the $I_{\text {out }}$ current at the voltage $V_{\text {out }}$ must be at least

$$
V_{\text {in }}=n \times V_{\text {out }}+\frac{I_{\text {out }}}{f \times C_{\text {st }}}
$$

so a very "basic" expression for the voltage efficiency is:

$$
\begin{aligned}
& \eta_{\text {volage }}=\frac{n V_{\text {out }}}{V_{\text {in }}}=\frac{1}{1+\frac{I_{\text {out }}}{V_{\text {out }}} \times \frac{1}{n \times f \times C_{\text {st }}}}<1 \\
& \text { deal value to aim. }
\end{aligned}
$$

1 is the ideal value to aim.
Large values for $n$ and $f$ should be chosen but they have also implications on the other terms of the global efficiency: hence the best choice must be a compromise.

Also $C_{s t}$ should be taken large, but it too has some implications in the efficiency.
The actual dependence of $\eta_{\text {voltage }}$ require a more complex model.

$$
\text { rd07 Conference - 10-29th June } 2007 \text { Florence, Italy }
$$

## Charge / Discharge of the capacitors

$\eta_{\text {voltage }}$ depends also on the time evolution both of the charge and discharge of the $\mathrm{C}_{\text {st }}$ capacitors.
In the time available for the charges transfers (frequency period) the involved charge is given by

$$
\Delta V_{D}=\frac{\Delta V_{C}}{\cos (\delta)} e^{-\beta\left(t-t_{0}\right)} \cos \left[\omega_{1}\left(t-t_{0}\right)-\delta\right]
$$

$+\frac{3}{4} V_{\gamma} \times \frac{t-t_{0}}{\tau_{D}}$

## $\eta_{\text {voltage }}$ : voltage efficiency formula

Starting from the charge/discharge shapes we derive the final expression for the $\eta_{\text {voltage }}$ of the regulator
$\eta_{\text {volage }}=\frac{1}{1+\frac{3}{4} \times \frac{V_{\gamma}}{V_{\text {out }}}+\frac{I_{\text {out }}}{V_{\text {out }}} \times \frac{1}{4 \times f \times C_{\text {st }}} \times\left[\left(1-\frac{12 \times V_{\gamma} \times f \times C_{\text {st }}}{\tau_{s} \times I_{\text {out }}} \times T\right) \frac{1}{h(T)}+\frac{g(T)}{1-g(T)}\right]}$
$h(T)=\left(1-e^{-\frac{\left(T-\tau_{m c}\right)}{\tau_{c}}}\right) \quad$ ( exponential of the charging shape )
$g(T)=\frac{1}{\cos (\delta)} e^{-\beta\left(T-\tau_{m s}\right)} \cos \left[\omega_{1}\left(T-\tau_{m s}\right)-\delta\right] \quad$ (discharging shape)
$T$ is the time at disposition for the transfer: $T=1 / f=1 / 2 \times f_{\text {bank }}$. $\mathrm{T}_{\mathrm{mc}}$ and $\mathrm{T}_{\mathrm{ms}}$ are dead times due to the project (can be changed)
$T_{s} \quad$ is a suitable time scale ( $\approx 7.5 \mu \mathrm{~s}$ )
$V_{Y} \approx 0.3 \mathrm{~V}$ is due to the diodes
rd07 Conference - 12-29th June 2007 Florence, Italy
$\eta_{\text {voltage }}$ vs frequency: formula versus experimental data
1.25 V

2.5 V

max. variation $\leq 2 \%$
rd07 Conference - 13-29th June 2007 Florence, Italy

## predictions of the model for 1.25 V prototype

Using the voltage efficiency formula we evaluate the behavior of the present prototypes without diodes and for different values of $C_{\text {st }}$.

rd07 Conference - 14-29th June 2007 Florence, Italy
$\eta_{\text {current }}$ efficiency: well above the $90 \%$


## leaking impedance:



$$
\begin{array}{ll}
I_{\text {lost }}=I_{\text {in }}-I_{\text {out }} / 4 \\
& V_{\text {in }} / I_{\text {lost }} \approx a / f+b / f^{2}
\end{array}
$$

rd07 Conference - 16-29th June 2007 Florence, Italy

Prototype efficiency ( all included )

0.75A

1.0A

1.5A

Drivers power: $5 \mathrm{~mW} /(\mathrm{MHz} \times$ gate )
-7\%
-1 MHz ...frequency position of the maximum efficiency

## Prototype efficiency ( all included )



Vout $=1.25 \mathrm{~V}$
rd07 Conference - 18-29th June 2007 Florence, Italy

## Conclusions:

Two prototypes of charge pump voltage regulator have been realized with outputs of 2.5 V ( $\leq 1.5 \mathrm{~A}$ ) and $1.25 \mathrm{~V}(\leq 1.5 \mathrm{~A})$ with the aim of defining an integrated circuit project to be deployed in an hostile ( high $B$ and high radiation ) environment .

The actual efficiency values obtained at operating frequencies up to $4-5 \mathrm{MHz}$ are (75-80)\% @ 2.5 V and (60-65)\% @ 1.25 V
The possibility of improving the 1.25 V efficiency of about $10 \%$, by replacing the diodes with floating body mosfets, has been shown.

The optimization of the switches drivers is still an open question.
Operation frequencies up to 5 MHz have been demonstrated and improvements are possible by carefully optimizing the layout.

## Thanks for your attention

