

EUROPEAN SPALLATION SOURCE

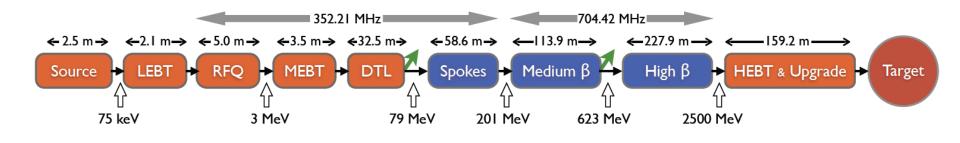
Machine protection plans in ESS

EUROPEAN SPALLATION SOURCE

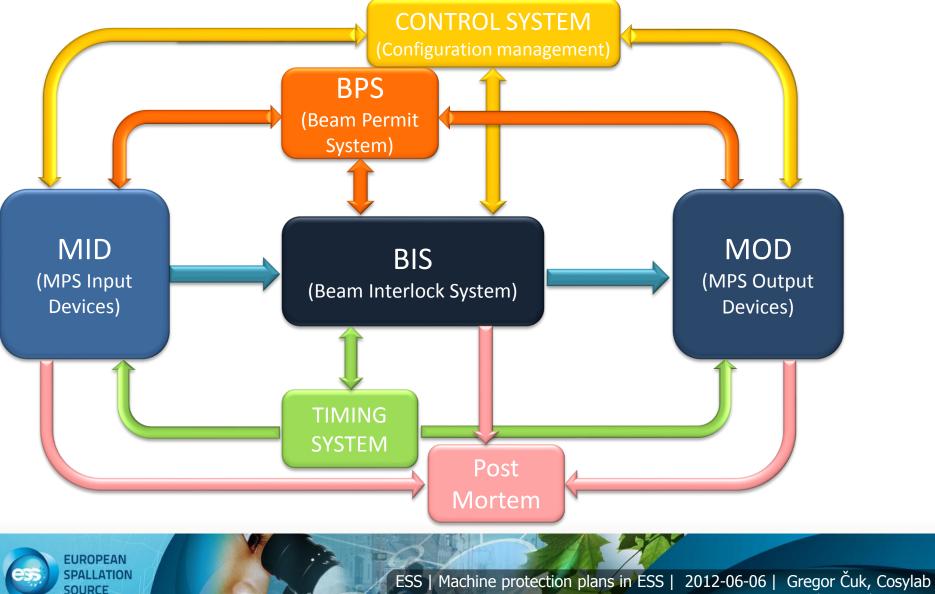
Overview

- About ESS & Cosylab
- Machine Protection System
 - Overview
 - Requirements
 - Functionalities as services
 - Reliability & safety
- Questions & open dilemmas

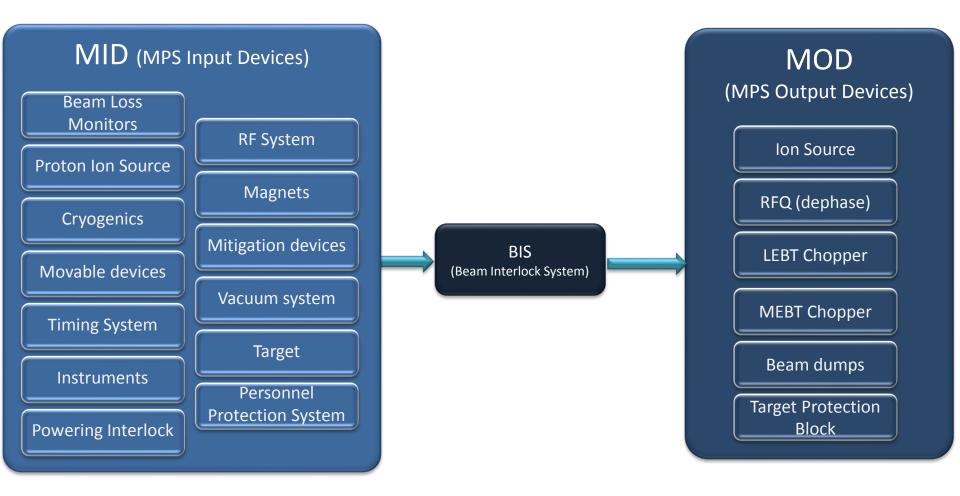
EUROPEAN SPALLATION SOURCE


About Cosylab

- Cosylab is a company with 65 engineers, providing solutions in the area of Control System for large physics experiments
 - Conceptual studies
 - Device integrations
 - Complete timing system solution
 - Core CS development: EPICS (v4), ACS...
- Our customers are from more the 50 labs from all over the world: ITER, ESS, SNS/ORNL, MedAustron, etc...
- Our collaboration with ESS Control System group (Garry Trahern) is currently covering control system box, timing system, MPS and database


European Spallation Source

- Length: 605.2m
- Proton kinetic energy: 2.5GeV
- Beam Power: 5MW
- Pulse length: 2.86ms
- Pulse repetition rate: 14Hz


EUROPEAN SPALLATION SOURCE

Machine Protection System

Annika Nordt, ESS

Machine Protection System

MPS, PPS and TSS relation

Reliability / QA		Infrastructure (Conventional Facilities)	Accelerator	Target	Instruments
				Target Safety System	
		Personnel Pr	otection System		
		Machine Prot	ection System		

MPS as a service

- MPS provides service to many devices
 - Around 1000 MID devices (inputs)
 - Few MOD devices (outputs)
- Two main services:
 - Beam Permit
 - Beam Interlock
- Additional services like:
 - Support for different machine modes
 - Support for commissioning phase
 - Support for post-mortem

Beam Permit

- BPS (Beam Permit System) validates all devices including BIS devices
- If configuration is correct, BPS issues Beam Permit
- BPS revokes Beam Permit after BIS stops the beam/machine
 - Can any other system stop the machine? Which one?

FUROPEAN

Beam Interlock

- Fast Beam Abort
 - Stop the beam a.s.a.p.
 - If the machine is in the middle of the pulse, abort it
 - Required response time 5-10µs
 - MID detection time + BIS time + MOD mitigation time
 - Exact times under evaluation
 - Propagation delay must be taking into account (3µs for 600m)
- Next Pulse Inhibit
 - MPS allows current pulse to finish, but prohibits next one
 - Pulse repetition rate 14Hz -> 68ms for response
 - Who is responsible to know when the pulse finishes?
 - BIS or mitigation device

Support for machine modes and commissioning phase

- Different configurations for different machine modes
 - Machine mode might change during run-time
- Input masking
 - Ignoring non-critical inputs temporarily (as long as the machine is in safe mode)
 - Masked signals will be logged
- Step-by-step commissioning – MPS grows with the machine

EUROPEAN

Support for Post-Mortem

- Data from operational MID devices will be logged
 - Circular buffers may be overwritten
 - MPS tells when to stop logging (via TS)
- BIS devices log all signal changes with precise timestamp
 - All BIS devices are synchronised with TS
- Post Mortem analysis
 - Collect logs from all devices (MID, MOD, BIS)
 - Merge into a single timeline
 - Provide different views on what was happening, which device caused machine to stop, etc.

ESS | Machine protection plans in ESS | 2012-06-06 | Gregor Čuk, Cosylab

Annika Nordt, ESS

EUROPEAN SPALLATION

Reliability and safety

- ESS targets high reliability 95%
- MPS reliability assured with
 - Fail-safe design
 - Redundancy
 - Self-diagnostics
- MPS safety
 SIL3 ?
- MPS security
 - Configuration security: who can change settings?
 - (Re)Start security: Who has rights to (re)start the machine? What are restart preconditions?

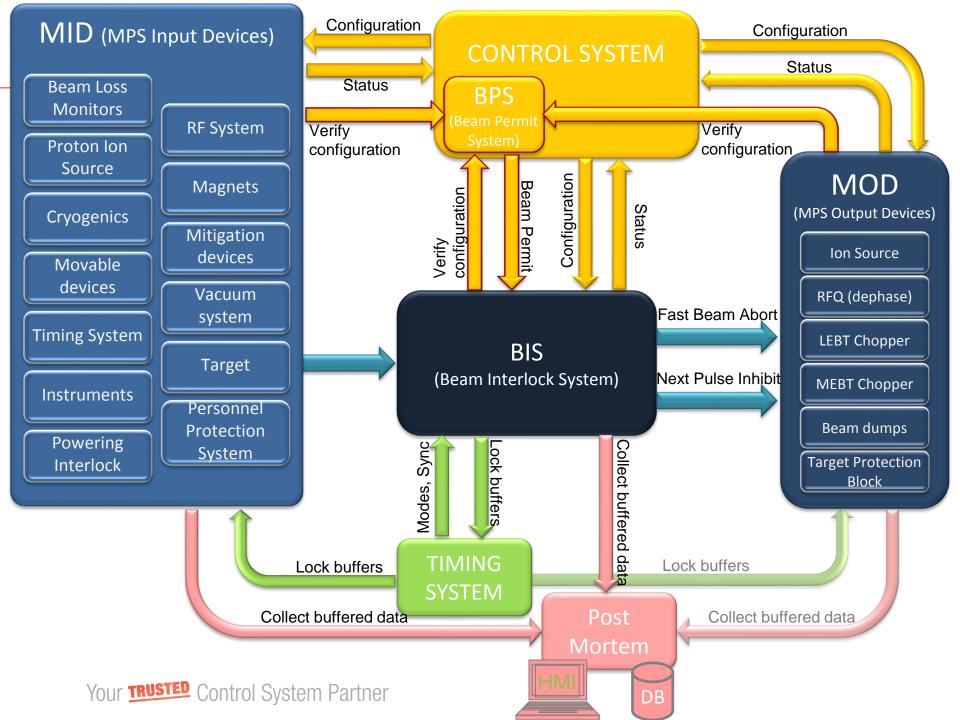
EUROPEAN SPALLATION SOURCE

Other questions and open issues

MPS responsibility boundaries

- "Device Integration guidelines" should be prepared
- Machine modes/operation modes
- Confirmation on existence of mitigation devices
- MPS reliability assessment failure catalogue

EUROPEAN SPALLATION SOURCE


Thank you!

EUROPEAN SPALLATION SOURCE

Backup

Customers From Nearly All Major Labs Worldwide

42

39 38

37

36

34

33 32 31

30

In COSYLAB

61

63

64

65

66 67

68

1. Canadian Light Source - CLS (CA) 2. Brookhaven National Laboratory - BNL (05) 4. Stanford Linear Accelerator Center - SLAC (US 5. Spallation Neutron Source - SNS (US) 6. National Radio Astronomy Observatory - NRAO (USI 7. Los Alamos National Laboratory - LANL (US) 8. National Instruments - NI (US) 9. Thomas Jefferson National Accelerator Facility - JLAB (US) 10. Atacama Large Millimeter Array - ALMA (RCH) 11. Macedonia Ministry of Agriculture (FYROM) 12. Fisheries and Rural Development, Zagreb (CRO) 13. Sinchrotrone Trieste - ELETTRA (IT) 14. Kyma (IT) 15. Instituto Nazionale di Fisica Nucleare - INFN-LNL II 16. Maatel Scientific Instrumentation (FR) 17. Xenocs (FR) 18. French Atomic Energy Commision (FR) 19. International Thermonuclear Experimental Reactor - ITER (FR)

18

cosylab

5

6

- 20. Feinwerk-und-Messetechnik GmbH (DE)
- 21. Gesselshaft fur Schwerionenforschung (DE)
- 22. European Southern Observatory ESO (DE)
- 23. Deutsches Elektronen-Synchrotron DESY (DE)
- 24. Dortmunder Elektronen Speicherring Anlage (DE)
- 25. Forschungzentrum Karlsruhe (DE)

- 29 26. Jenoptik AG Jena (DE)
- 3. Advanced Photon Source APS at Argonne Velonal Laboratory (US) 28. European Molecular Biology Laboratory EMBL (DE) 29. Electron accelerator - ELSA (DE)
 - 30. AOCEL (DE)/ 31.Jmtech Vonk (NL)

 - 32. Kernfyzisch Versneller Instituut KVI INLJ 33. Ion Boz OApplications IBA (B) 34. CELLS ALBACS

 - 35. Observatorio Astronarico Nacional OAN ES) 20 36. CERN - European Organization for Nuclear Besearch (CH)
 - 37. Paul Scherer Institut PSI (CH) 22 38. Geographic Data Support Ltd (UK)

 - 39. Infoterra Ltd (UK)
 - 40. STAR-APIC (UK)
 - 41. Rutheford Appelton Laboratory (UK)
 - 42. Daresbury Laboratory (UK)
 - 43. Diamond (UK)
 - 44, FMBO Oxford (UK)
 - 45. Danfysik (DK)
 - 46. J. Stefan Institute (SI)
 - 47. Hidria (SI)
 - 48. ISKRATEL (SI)
 - 49. Telsima (SI)

Your TRUSTED Control System Partner

- 50 AET (SI) 27. Rive kallsch-Technische Bundesanstalt Berlin - PTB (De) 51. Slovenian Ministry of Agriculture Food and Forestry (SI) 28. European Molecular Biology Laboratory - EMBL (DE) 52. Seaway (SP 53. Slovenian Environmental Agency - ARSO [50 54. The Surveying and Mapping Authority of the Republic of Slovenia-GURS (5) 72 55.The National Veterinary Administration- VURS (SI) 56. Instrumentation Technologies - I-TECH (5) 7. Electronic Institute Milan Vidmar -EIMV (S 98. Slovenian Ministry of the Environment and Spatial Planning (SI 59. Smart Com (SI) 60. SOU (51) 61. Hitachi Zosen (JP) 62. The University of Tokyo (JP)
 - 63. Hiroshima University (JP)

13

- 64. Riken (JP)
- 65. Nichizou Denshi Seigyo Kabushikigaisha (JP)
- 66. High Energy Accelerator Research Organisation KEK (JP)
- 67. Institute for Molecular Science (JP)
- 68. Japan Synchrotron Radiation Research Institute- JASRI (JP)
- 69. Japan Atomic Energy Research Institute JAERI (JP)
- 70. NSRRC -National Synchrotron Radiation Research Center (TW)
- 71. Raja Ramanna Centre of Advanced Technology RRCAT (IN)
- 72. Australian national nuclear research and development organisation ANSTO (AU)
- 73. Australian Synchrotron Project ASP (AU)