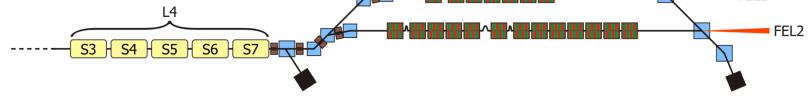

The FIVE presentations:


- 1) B.Dehning: LHC Beam Loss Detection System
- 2) S. Mallows: Studies for the CLIC TBM BLM System
- 3) L. Froehlich: Diagnostics for MP at FERMI@Elettra
- 4) B. Puccio: Equipment fault Detection Sequence
- 5) V.Kain: Beam Quality Assessment for the LHC beams (real time and post-pulse)

FERMI@Elettra

	Energy	Bunch Charge	Repetition Rate	Beam Power
Typical	1.2 GeV	350 pC	10 Hz	4.2 W
Design	1.5 GeV	1 nC	50 Hz	75 W

Main Purpose: General Diagnostics and Protection on PM Undulators

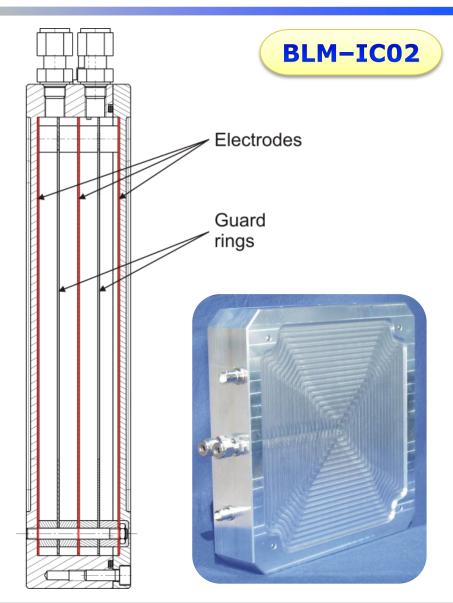
Workshop on Machine Protection, CERN, 6–8 June 2012

Lars Fröhlich, Sincrotrone Trieste

- Cherenkov Light in fibres
- Multi Pixel Photon Counter Readout
- RADFET Dosimeters

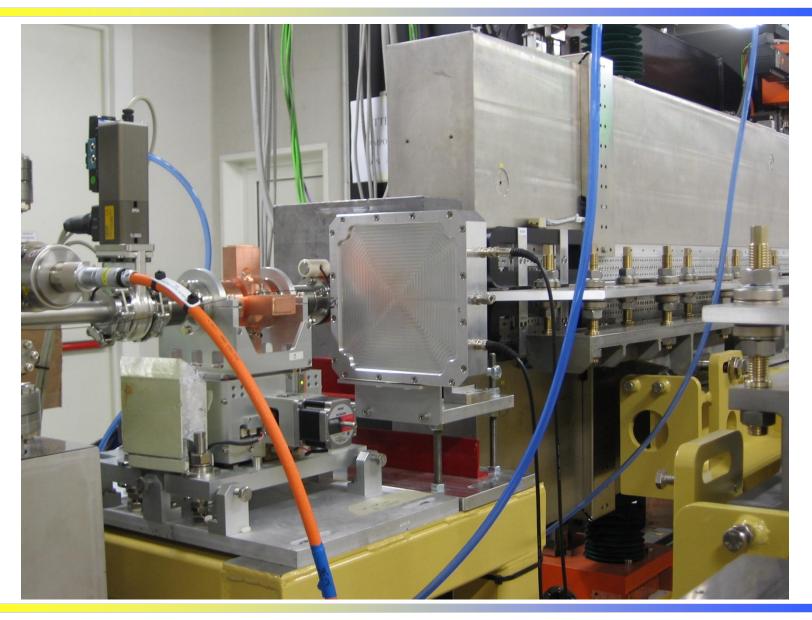
FERMI

@elettra

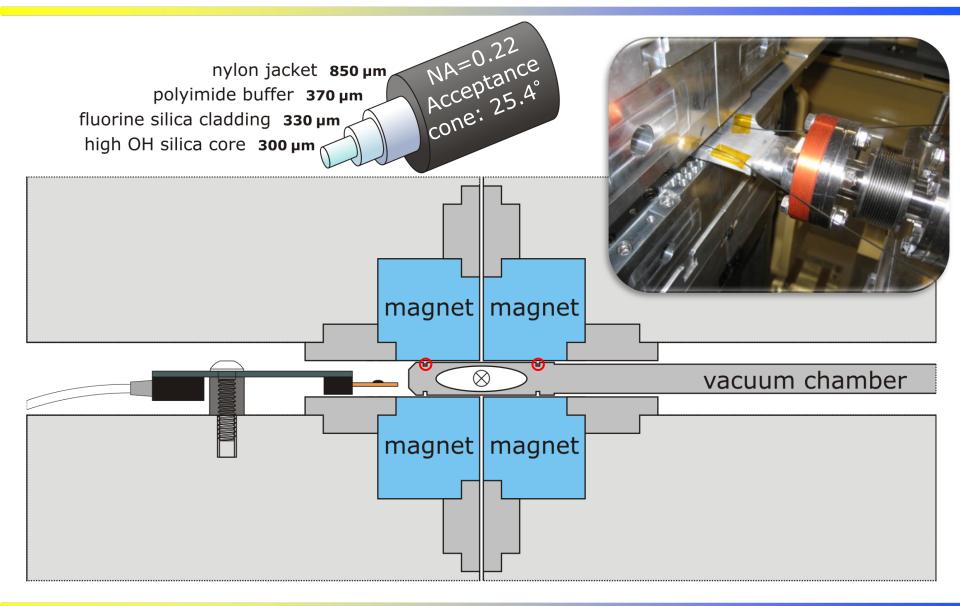


Ionization Chambers

- Milled aluminum enclosure
- Electrodes: printed circuit boards
- Use in air or with gas flux
- Volume:
 1.31
- Voltage: up to 1000 V
- Sensitivity (air): ~46 µC/Gy
- Leakage current:
 << 200 fA (at 1000 V)
- Fermi:


 ionization chamber in air
 per undulator segment (19 total)

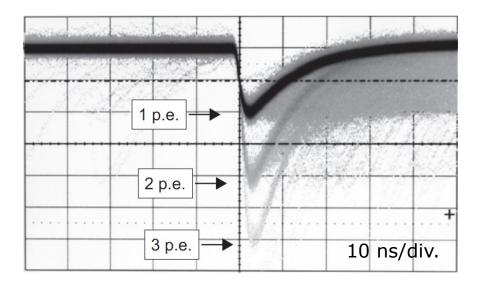
Ionization Chambers

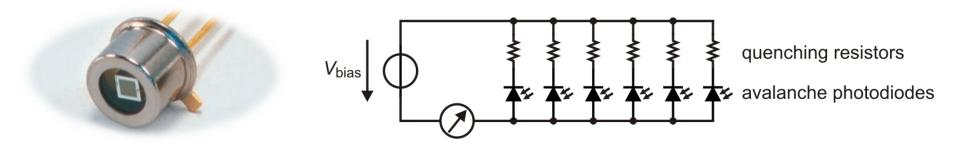

Workshop on Machine Protection, CERN, 6–8 June 2012

Lars Fröhlich, Sincrotrone Trieste

Undulator Cross Section

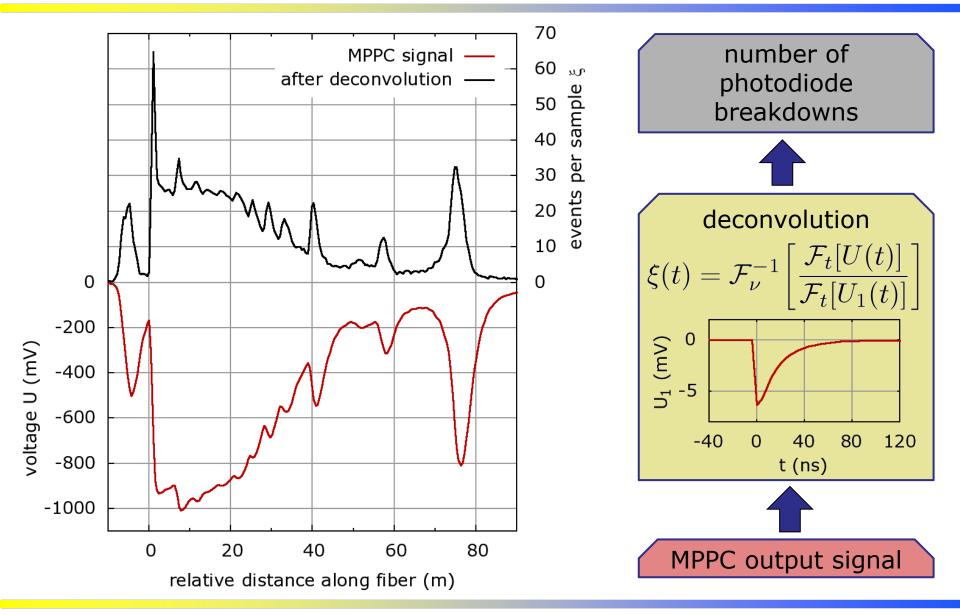
Workshop on Machine Protection, CERN, 6-8 June 2012


Lars Fröhlich, Sincrotrone Trieste

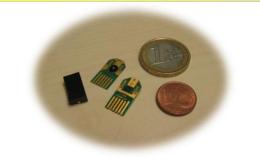


Multi-pixel Photon Counters (MPPCs)

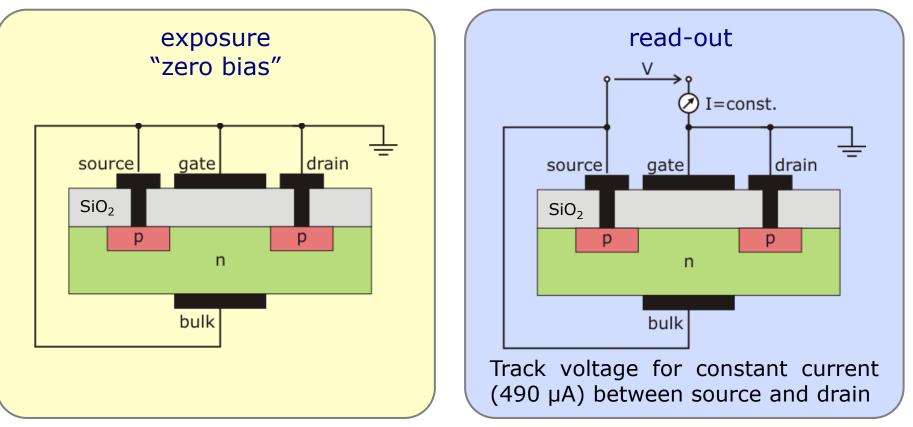
- Array of avalanche photodiodes (APDs) connected in parallel
- Reverse bias → photon causes
 APD breakdown
- Photomultiplier-like gain
- Dynamic range limited by number of APDs
- Rise time: some 100 ps
- Hamamatsu S10362-11-050U: 400 APDs at ~70 V reverse bias



Signal Processing

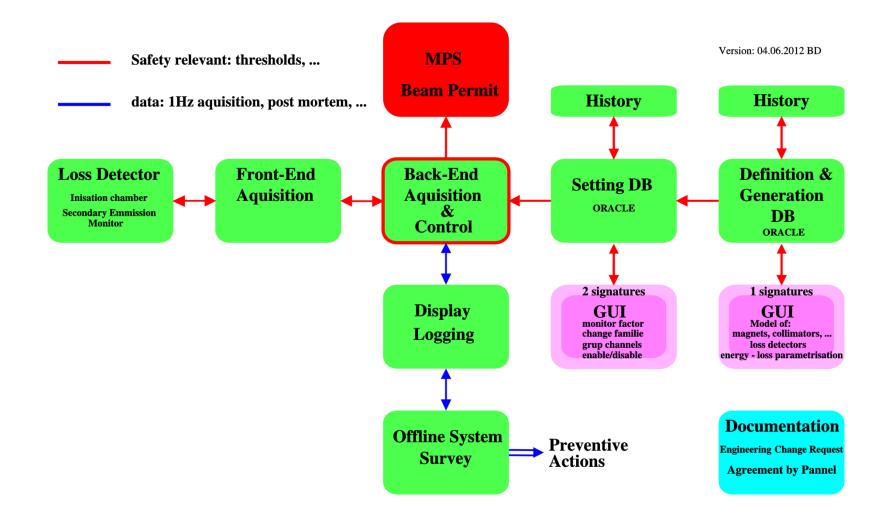

Workshop on Machine Protection, CERN, 6-8 June 2012

Lars Fröhlich, Sincrotrone Trieste

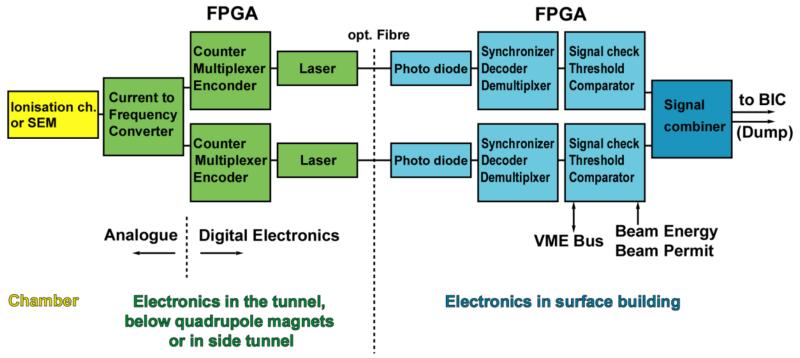


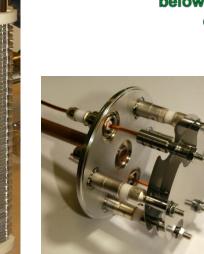
RADFET Dosimeters

- REM Oxford Ltd. RADFET RFT-300-CC10G1
- Chip contains 2 p-channel MOSFETs with 300 nm insulator layer


Lars Fröhlich, Sincrotrone Trieste

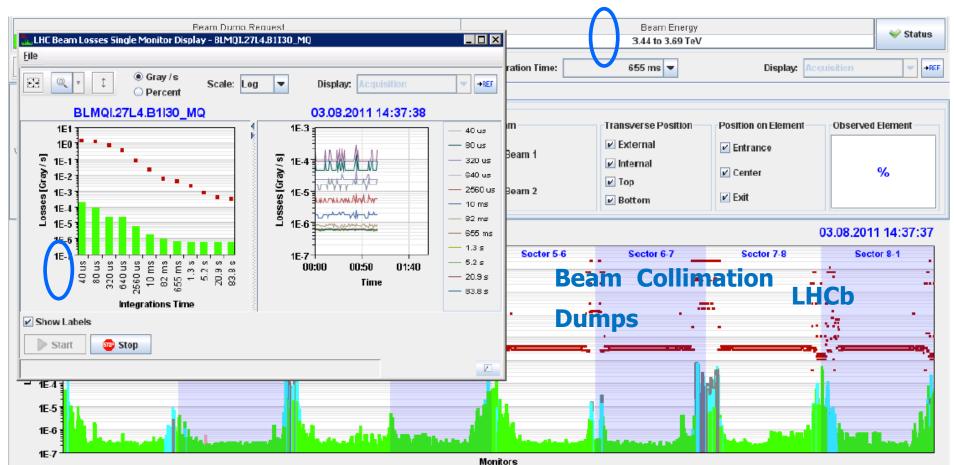
From a small dedicated system to very large system

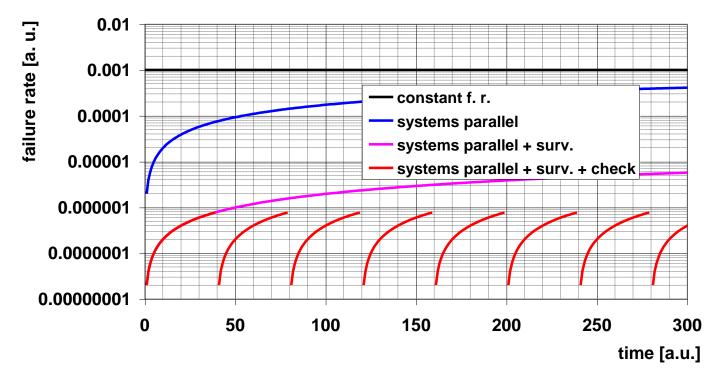

- LHC BLM system:
- Choice of detectors:
 About 4000 Ionization Chambers and SEM detectors
- Designed to be highly reliable and available
- Combines Diagnostics needs and is major component of LHC MP
- Anticipates human errors and changing of teams over years: Fully data base driven and well documented
- Would be interesting to get the information on investment:


My guess: 20 MCHF and 200 FTEyears

BLM System Knowledge Flow

Beam Loss Measurement System Layouts




- Ionisation chamber
 - Function: observation and interlock
 - 3700 installed
 - Over 90 % connected to interlock/dump system
- Secondary emission detector
 - Function: observation
 - 300 installed

BLM System – Online Display

- Extensively used for operation verification and machine tuning
- 1 Hz Logging (12 integration times, 40 us to 83 s)
 - Integration times < 1s: maximum during the last second is logged
 - short losses are recorded and loss duration can be reconstructed (20% accuracy)
 - Also used for Online Display

Reliability: Failure Rate and Checks

Systems parallel + survey + functional check:

- 1. in case of system failure dump beam (failsafe)
- verification of functionality: simulate measurement and comparison with expected result => as good as new

Key implementation to obtain low failure rate

H.Schmickler

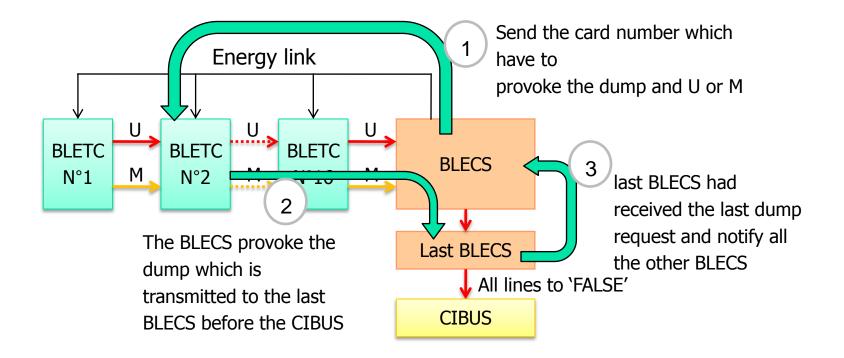
Steps taken for a Failsafe System: Avoiding Human Errors

To avoid misplacement of

- electronic cards or
- > threshold and masking tables
- Tunnel Card ID
 - Unique number embedded in the FPGA (16bit)
 - Included in every transmitted frame
 - Compared with the one stored in the LSA DB
- Surface Card Serial number
 - Unique number embedded in a IC (64bit)
 - Compared with the one stored in the LSA DB

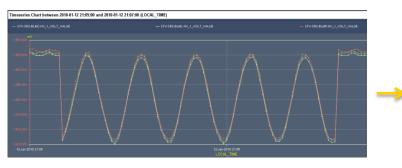
To avoid loss of data

Frame ID

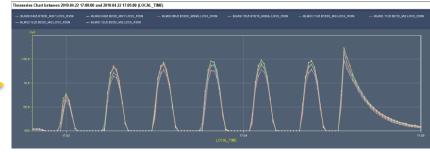

- Surface FPGA checks for missing frames
- Incrementing number included at every transmission
- Optical link is always active
 - 8b/10b encoding sends "commas" when no data
 - Disconnection is detected in max 25ns

To ensure recognition of system failures and beam dump requests

- FPGA Outputs (Beam Dump signals) as frequency
 - At a dump request, reset, or failure the transmitted frequency will be altered
- Beam Permit lines are daisy-chained between cards
 - Custom VME backplane
 - Dummy cards on empty slots to close circuit

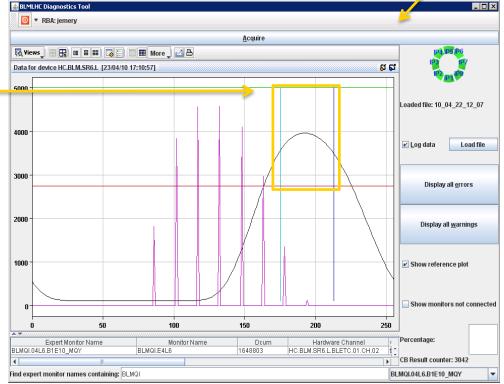

Internal (VME crate) beam permit check

- Check the beam permit lines (BPL) inside the crate
- Check the BPL between the crates (on the same IP)
- Check results are saved in the database



Connectivity check

The high voltage is modulated with a 30V/60mHz signal

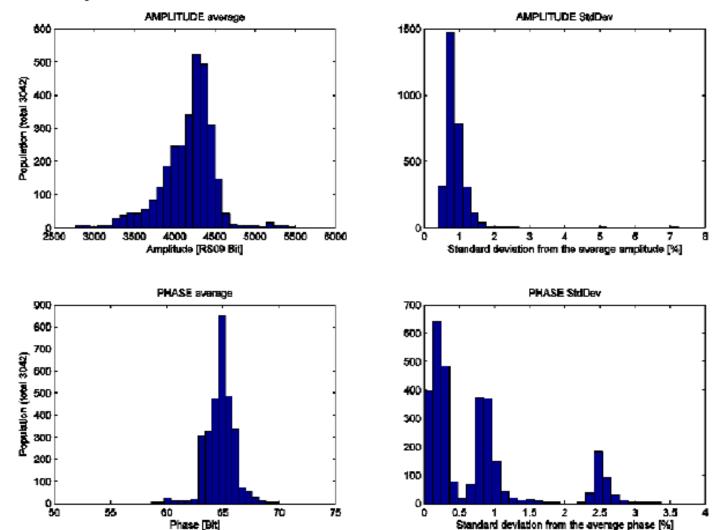


A current is induced in the monitors and measured by the system

Internal thresholds settings overview in the diagnostic tool. (unique for each monitor)

- 1. Check of cabling
- 2. Check of components, R- C filter
- 3. Check of chamber capacity
- Check of stability of signal, pA to nA
- 5. Not checked: gas gain of chamber

Last full period in saved in the SRAM and processed


The phase and amplitude are calculated and compared to predefined thresholds in the BLECS card.

The raw and filtered data is kept into the SRAM and can be retrieved with the Diagnostic application

H.Schmickler

Workshop on Machine Protection, Focusing on Linear Accelerator Complexes

High Voltage Modulation Results

Connectivity check measurements (100x) on BLMQI monitors (Ionization chambers in the arcs)

Continuous effort for high performance...

....through online (and offline) checks of critical beam parameters

...essential to get highest integrated luminosity ... Provides first indication of deteriorations

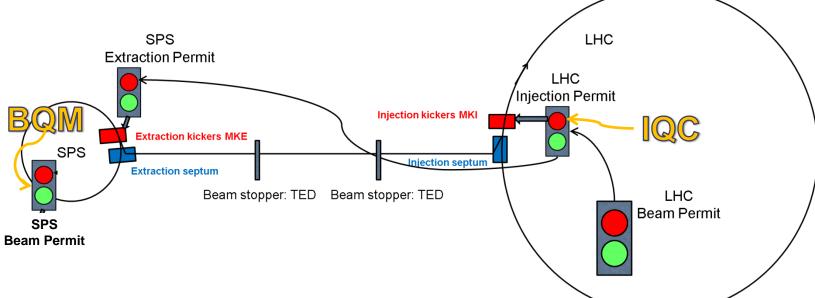
which, if followed –up, contribute essentially to the understanding and protection of the accelerator

and create ideas for improvements


Needs a complete set of Instruments for Diagnostics

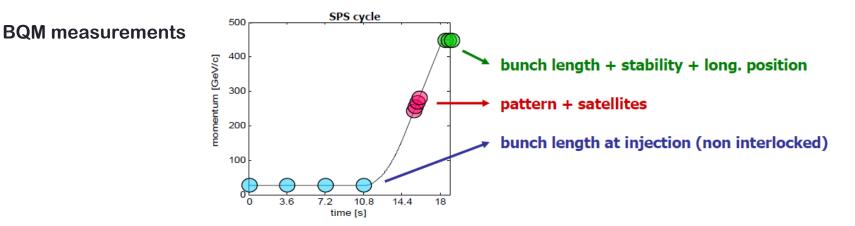
Layout SPS to LHC

o 23 km long transfer lines to fill the LHC from the SPS


- o Need ~ 12 injections per ring to fill LHC; LHC cycle in the SPS ~ 20 s.
- o Fast extraction from the SPS
- o As soon as extraction launched cannot stop it anymore

BQM and IQC signals used online

- o BQM connected to SPS Beam Permit
- o IQC connected to injection Software Interlock System (SIS), the injection SIS is connected to the injection permit



- o IQC also connected to Injection Sequencer
 - Programs the next injection in the injector timing system
 - Programs all the equipment with required settings for next injection:
 - Pattern of BQM
 - □ Next injected bunches for bunch-by-bunch measurement systems
 - **.**..

Beam Quality Monitor in the SPS

o Beam Quality Monitor (BQM) – checks longitudinal quality of beam in the SPS

- o Based on Wall Current Monitor Beam Profile. Analysis running on FESA class.
- o Dumps beam in the SPS in case of bad quality. Last check ~ 20 ms before extraction.
- o Analysis speed: 10 ms data acquisition + 10 ms analysis
- o Typical errors caught:
 - Rephasing not working correctly
 - Fully debunched (PS cavity missing)
 - Bad injection phase or bad PS bunch splitting
 - Injections in wrong bucket or missing injections in the SPS
 - Bunch intensity spread too large

Beam Quality Monitor in the SPS

o The BQM analyses each SPS cycle, no matter whether beam requested by LHC or not.

ð 🕪 📂 🕨 🥶 🕂 🗖 🔶 01 Jun 2012 (01:59:15 SPS - LHC	1, 36		CNGS1	- 02	🗹 Auto	Select LF	IC Cycle							
Expected Beam Pattern		Results													
SPS LHC		SPS Mast	ership					SSC Numbe	n: 5279				2	012.06.01	01:58:54
	***	Status	Graphs	Inject	ion Graph	s Data	7								
Bunch Spacing:	50 ns	Time	Cycle	Master	Dump	Beam	1st Bu	Bu length B	Pullongt	Ru Book	Bu Peak Std	Stability	Sotolli	Pattern	Warnings
	**	01:58:54	LHC1	SPS	Enabled	Ok	Ok	Ok	ok Lengt	BU PEAK	Ok	Ok	ok ok	Ok	Could r
Number of Bunches per Batch:	36	01:58:10	LHC1	SPS	Enabled	Ok	OK	Ok	Ok	OK	Ok	Ok	OK	OK	Could r
Number of Bunches per Batch.	**	01:57:27	LHC1	SPS	Enabled	OK	Ok	Ok	Ok	OK	OK	OK	OK	Ok	Could r
		01:56:44	LHC1	SPS	Enabled	Ok	Ok	Ok	Ok	Ok	Ok	Ok	Ok	Ok	Could r
Number of Batches:	4	01:56:01	LHC1	SPS	Enabled	OK	Ok	Ok	Ok	Ok	Ok	Ok	Ok	Ok	Could r
	•	01:55:18	LHC1	SPS	Enabled	Ok	Ok	Ok	Ok	Ok	Ok	Ok	Ok	Ok	Could r
	****	01:54:34	LHC1	SPS	Enabled	OK	OK	OK	OK	Ok	Ok	OK	OK	OK	Could r
Batch Spacing:	250 ns	01:53:51	LHC1	SPS	Enabled	OK	Ok	OK	Ok	OK	OK	OK	OK	Ok	Could r
	***	01:53:08	LHC1	SPS	Enabled	OK	Ok	Ok	Ok	Ok	Ok	OK	OK	Ok	Could r
📑 Inj Bucket	Selector Calc.	01:52:25	LHC1	SPS	Enabled	OK	Ok	OK	Ok	OK	Ok	OK	OK	Ok	Could r
		01:51:42	LHC1	SPS	Enabled	Ok	Ok	OK	Ok	OK	Ok	OK	OK	Ok	Could r
ettings	▲	01:50:58	LHC1	SPS	Enabled	OK	Ok	Ok	Ok	Ok	Ok	Ok	OK	Ok	Could r.
BQM Beam Dump:	Enabled 👻	01:50:15	LHC1	SPS	Enabled	Error	OK	Ok	Ok	OK	Ok	Ok	Ok	Error	Could r.
Venife Desserve	Encluded	01:49:32	LHC1	SPS	Enabled	Ok	Ok Ok	Ok Ok	Ok Ok	Ok Ok	Ok Ok	Ok Ok	Ok	Ok Ok	Could r.
Verify Pattern:	Enabled 👻	01:48:49 01:48:06	LHC1 LHC1	SPS SPS	Enabled Enabled	Error	OK	Error	OK	OK	OK	OK	Error Ok	OK OK	Could r. Could r.
Acquisition Full Scale:	2 V 💌	01:47:22	LHC1	SPS	Enabled	Ok	OK	Ok	Ok	OK	OK	OK	OK	OK	Could r.
Bunch Length Min Threshold:	A A A	01:46:39	LHC1	SPS	Enabled	OK	OK	OK	OK	OK	OK	OK	OK	OK	Could r.
	1.00 ns	01:45:56		SPS	Enabled	Error	OK	Ok	Ok	OK	Ok	Ok	Error	OK	Could r.
	* **	01:45:13	LHC1	SPS	Enabled	Error	Ok	Error	Ok	OK	OK	Ok	Ok	Ok	Could r.
Bunch Length Max Threshold:		01:44:30	LHC1	SPS	Enabled	OK	Ok	OK	Ok	OK	OK	OK	Ok	Ok	Could r.
	1.81 ns	01:43:46	LHC1	SPS	Enabled	Error	Ok	Error	Ok	Ok	Ok	Ok	Ok	Ok	Could r.
		01:43:03	LHC1	SPS	Enabled	OK	Ok	Ok	Ok	Ok	Ok	OK	OK	Ok	Could r
Bunch Length Standard Deviation:	0.18 ns	01:42:20	LHC1	SPS	Enabled	Ok	Ok	Ok	Ok	Ok	Ok	Ok	Ok	Ok	Could r
banen zengen standard bernationi	¥¥ "3	01:41:37	LHC1	SPS	Enabled	OK	Ok	OK	OK	Ok	Ok	OK	OK	Ok	Could r
		01:40:54	LHC1	SPS	Enabled	OK	Ok	OK	Ok	Ok	Ok	OK	OK	Ok	Could r
Bunch Peak Standard Deviation:	0.050v	01:40:10	LHC1	SPS	Enabled	Ok	Ok	Ok	Ok	OK	OK	Ok	Ok	Ok	Could r
	**	01:39:27	LHC1	SPS	Enabled	OK	OK	OK	OK	OK	Ok	OK	OK	OK	Could r.
	A AAA	01:38:44	LHC1	SPS	Enabled	Error	OK	OK	Ok	OK	Ok	OK	Error	Ok	Could r.
Bunch Peak Min Threshold:	1.200v	01:38:01	LHC1	SPS	Enabled	OK	Ok	OK	Ok	OK	Ok	OK	Ok	Ok	Could r.
	* ***	01:37:18	LHC1	SPS	Enabled	Error	OK	Error	Ok	OK	Ok	OK	OK	Ok	Could r.
Bunch Peak Max Threshold:	1.500v	01:36:34	LHC1	SPS	Enabled	Error	Ok	Ok	Ok	Ok	Ok	Ok	Ok	Error	Could r.
	* * * * *	01:35:51	LHC1	SPS	Enabled	Error	OK	Ok	Ok	Ok	Ok	Ok	Ok	Error	Could r.
	-	01:35:08 01:34:25	LHC1 LHC1	SPS SPS	Enabled Enabled	Error Error	Ok Ok	Ok Ok	Ok Ok	Ok Ok	Ok Ok	Ok Ok	Ok Ok	Error Error	Could r. Could r.
Bunch Peak Modulation Index Threshold	d: 1.00	01:33:42	LHC1	SPS	Enabled	Error	OK	OK	Ok	OK	OK	OK	OK	Error	Could r.
	* * *	01:32:58	LHC1	SPS	Enabled	Error	Error	Error	Frror	OK	Error	Error	OK	Error	No bea.
	* *	01:32:15	LHC1	SPS	Enabled	Error	Error	Ok	Ok	OK	Ok	Error	Ok	Error	Could r.
atellites Intensity Threshold:	4%	01:31:32	LHC1	SPS	Enabled	Error	Error	OK	OK	OK	OK	Error	OK	Error	Could r.
		01:30:49	LHC1	SPS	Enabled	Error	Error	Error	Error	Ok	Error	Error	Ok	Error	No bea
atellites Mid Bucket Threshold:	4%	01:30:06	LHC1	SPS	Enabled	Error	Error	OK	Ok	Ok	Ok	Error	Ok	Error	Could r
succinces who bucket threshold.	▼~ _	01:29:22	LHC1	SPS	Enabled	Error	Error	Ok	Ok	Ok	Ok	Error	Ok	Error	Could r.
	· · · · · · · · · · · · · · · · · · ·	01:28:39	LHC1	SPS	Enabled	Error	Error	Ok	Ok	Ok	Ok	Error	Ok	Error	Could r.

o Logical "AND" of all analysis results, if FALSE beam dumped before extraction

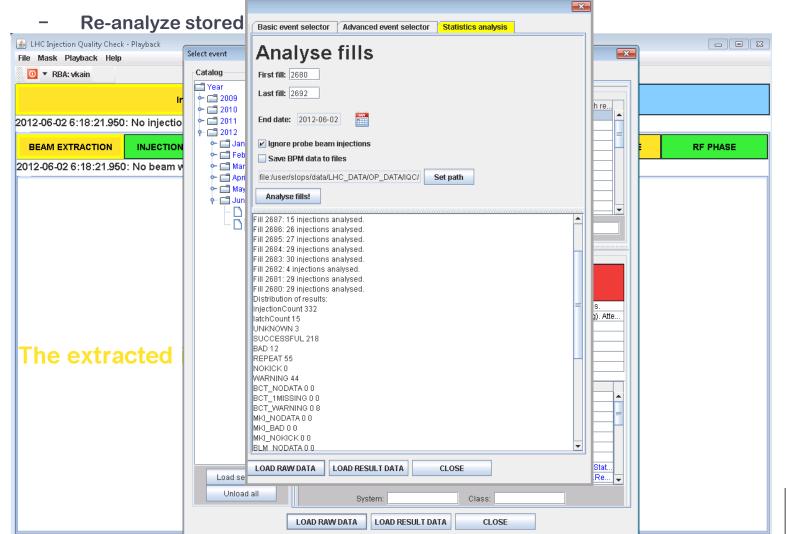
Injection Sequencer and IQC

- o Injection sequencer: pre-programmed series of different shots
 - Different number of bunches, different RF bucket, ...
- o Injection sequencer only plays next request if IQC result was good.

4 2			INJECTION SE	QUENCER	v0.3.3							_
💽 🔻 RBA: Ihcop	1											
Injection schemes					_ 1380	b_1380_		_144b	pi12inj			
Filter 1380	Select	LOAD	OVER_IN	-		PILOT R1:	5791				PILOT R2	: 5791
GRP: 50ns 🗸 🗸	Select	RFBucket NbrBno		ON RING	L Bnchint(E9		DEPusies	hillsoDecel		TION RINC	Bnchint[E	
50ns_1380b+1small_1318_39_1296 50ns_1380b_1331_0_1320_144bpi1 50ns_1380b_1377_0_1274_144bpi1 50ns_1380b_1377_0_1274_144bpi1 50ns_1380b_1380_0_1274_144bpi1	Scheme active when loaded Allows online buck modif	61 12 651 144 4121 144 7721 72 9591 144 13061 144 16661 72 18531 144 22001 144 25481 72 77351 144	50 50 50 50 50 50 50 50 50 50 50 50 50 5	1 4 4 2 4 4 2 4 4 2 4 4 2 2 4	100 100	INTR NOM NOM NOM NOM NOM NOM NOM NOM	RFBucket 1 651 4121 7721 9591 13061 16661 18531 22001 25481 27351 30821	Normalize 144 144 72 144 72 144 72 144 72 144 144 144 144 144 144 144 144 144 144 144 144 144 144	Bitchspe 50	4 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4	Infinite 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	INTR NOM NOM NOM NOM NOM NOM NOM
	Display circ bu conf Clear active scheme	30821 144				NOM						NOM
			Start		Step	STOP	RESET		Start		Step	STOP
Refresh list	⊯ Disable inj trims	✓ Enable inj clea Clear bch con MD OPTIONS	f		B/BQM che set Bu			inj clean bch conf)PTIONS	_		Set B	
check reservation	cwo-ccc-d4lc.cei	m.ch					LHC master	<u> </u>	LHC mas	tership		
12:44:18 : IQC_RESULT BEAM1 Beam injected! BQMs: Injected 14 12:43:35 : IQC_RESULT BEAM2	4 bunches(1380 bun >>> INJECTION OF	ches circulating). K								UNLATCH BI	_	H STATUS B1
Beam injected! BQMs: Injected 14 12:44:19 - INJECTION RING 1 : IQC analysis		ches circulating).										
				-	-		-					

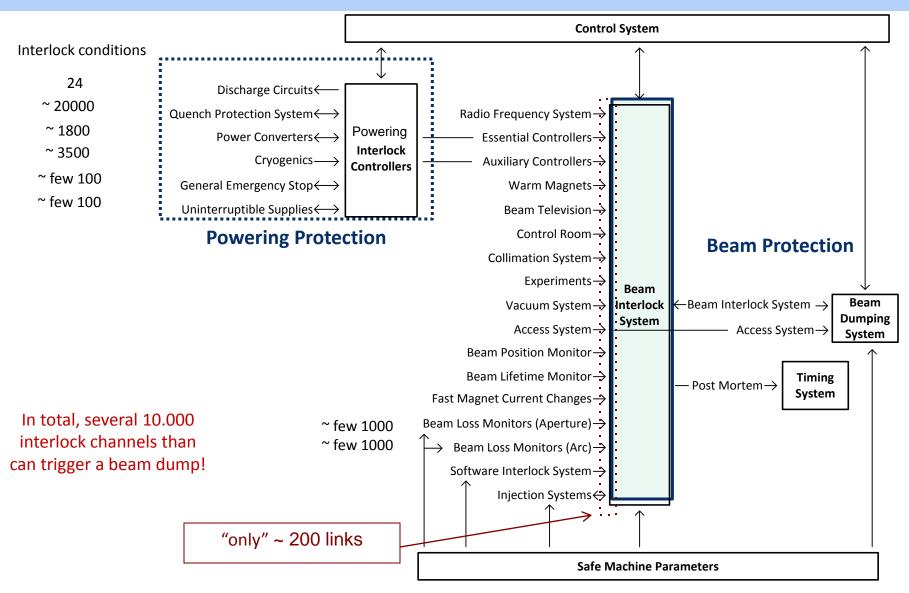
Injection Quality Check in the LHC

o If injection oscillations are above limit – can only reinject with maximum 12 bunches. Aperture conservation in LHC and Damper good damp L.

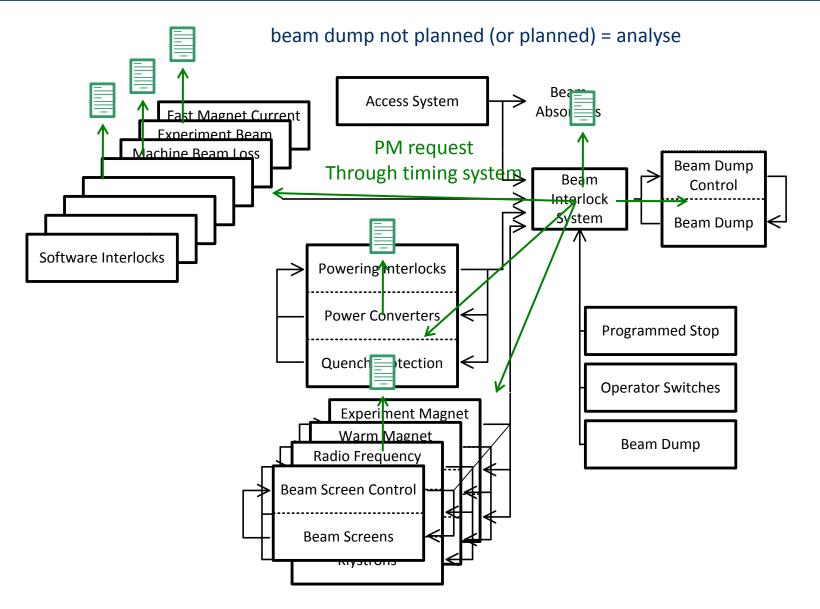

Contraction Contraction <thcontraction< th=""> <thcontraction< th=""></thcontraction<></thcontraction<>			Injection IR2		In	jection IR8	
RMS_H MAX_H RMS_V MAX_Y Bunch ID \ Thresholds: 0.75 1.5 0.75 1.5 66 0.1486 0.4643 0.2178 0.4465 68 0.1537 0.3969 0.1520 0.3521 70 0.1532 0.3718 0.1717 0.3507 72 0.1674 0.4419 0.1937 0.3988 74 0.1739 0.4663 0.2233 0.5308 76 0.1742 0.4175 0.2575 0.6353 Vertical parameters over bunches Vertical parameters over bunches	2-05-30 19:	33:09.950: B	eam injected! BQMs: Injec	ed 144 bunches(156 bur	nches circulating).		
RMS_H MAX_H RMS_V MAX_T Bunch ID \ Thresholds: 0.75 1.5 0.75 1.5 66 0.1486 0.4643 0.2178 0.4465 68 0.1537 0.3969 0.1520 0.3521 70 0.1532 0.3718 0.1717 0.3507 72 0.1674 0.4419 0.1937 0.3988 74 0.1739 0.4663 0.2233 0.5308 76 0.1742 0.4175 0.2575 0.6353 Per bunch Trends Vertical parameters over bunches Reference MAX (250, 1.5) 1.4 1.2 1 1 1 Reference MAX (250, 1.5)	AM EXTRACTIO	N INJECTI		NITORS RF BUCKET CHECK	INJECTION OSCILLA	TRANSFER LINE	RF PHASE
Bunch ID \ Thresholds: 0.75 1.5 0.75 1.5 66 0.1486 0.4643 0.2178 0.4465 68 0.1537 0.3969 0.1520 0.3521 70 0.1532 0.3718 0.1717 0.3507 72 0.1674 0.4463 0.2233 0.3988 74 0.1739 0.4663 0.2233 0.6353 76 0.1742 0.4175 0.2575 0.6353 Verticitarameters over bunches Verticitarameters over bunches	.2-05-30 19:	33:09.956: B	PM analysis was good: inj	ection oscillations are wit	hin thresholds.		Л
66 0.1486 0.4643 0.2178 0.4465 68 0.1537 0.3969 0.1520 0.3521 70 0.1532 0.3718 0.1717 0.3507 72 0.1674 0.4419 0.1937 0.3988 74 0.1739 0.4663 0.2233 0.5308 76 0.1742 0.4175 0.2575 0.6353 Vertical parameters over bunches Vertical parameters over bunches			RMS_H	MAX_H	RMS_V		MAX_V
68 0.1537 0.3969 0.1520 0.3521 70 0.1532 0.3718 0.1717 0.3507 72 0.1674 0.4419 0.1937 0.3988 74 0.1739 0.4663 0.2233 0.5308 76 0.1742 0.4175 0.2575 0.6353 Vertici parameters over bunches Vertici parameters over bunches Vertici parameters over bunches	Bunch ID \ Th	resholds:	0.75	1.5	0.75		1.5
70 0.1532 0.3718 0.1717 0.3507 72 0.1674 0.4419 0.1937 0.3988 74 0.1739 0.4663 0.2233 0.5308 76 0.1742 0.4175 0.2575 0.6353 Vertical parameters over bunches							
72 0.1674 0.4419 0.1937 0.3988 74 0.1739 0.4663 0.2233 0.5308 76 0.1742 0.4175 0.2575 0.6353 Per bunch Trends Vertical parameters over bunches Vertical parameters over bunches 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.4 1.2 1.4 1.4 1.2 1.4 1.4 1.4 1.4 1.4 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4							
74 0.1739 0.4663 0.2233 0.5308 76 0.1742 0.4175 0.2575 0.6353 Per bunch Vertical parameters over bunches							
76 0.1742 0.4175 0.2575 0.6353 Per bunch Trends							
Per bunch Trends Vertical parameters over bunches Vertical parameters over bunches							
1.4 1.4 1.4 1.4 1.2 1.4 1.4 1.2 1.4 1.4 1.4 1.2 1.4 <th></th> <th></th> <th>0.1742</th> <th>0.4175</th> <th>0.2373</th> <th></th> <th>0.0333</th>			0.1742	0.4175	0.2373		0.0333
	Horisontal p	arameters over b	ounches		Vertical parameters over bunche	25	
	1.2- 1- 0.8-	m	h	1.2 1 1 0.8		(250	9, 1.5
0.8 0.6 0.4 0.2 0 100 150 200 250 300 350 0.8 0.6 0.4 0.2 0 0 100 150 200 250 300 350 100 150 200 250 300				0.2	~~~~~~		
bunch ID bunch ID	0	150	200 200 .				

26

IQC in the LHC – playback, statistics


- o The LHC injection process is now well understood due offline analysis
- o IQC comes with all the LHC postmortem infrastructure
 - E.g. Replay of stored events with the same tools

The MPS: Just the final executioner or more?


- o Basic functionality:
- Distributed system to collect all necessary machine interlocks
- Able to activate the LHC beam dumps within one machine turn
- Fail-save, highly reliable, highly available
- Strongly connected to the machine general timing system
- "Orchestrates" a powerful offline utility called:
 'Post Mortem analysis'
- One (of many) diagnostics tools of this post mortem analysis is establishing in detail the causality of a beam dump by time correlation of individual interlocks
 → need front end equipment to have synchronized clocks on the microsecond level!

BIS = Core of LHC Machine Protection

Post-Mortem layout

An example of event sequence

Event Timestamp: 12-JUN-11 07.17.00.656290 AM

Beam Energy: 3500040

Mps Expert Comment : Quench of RD2.L1 magnet

(+ due to suspected imbalance as well RQ4 some 17 sec. after the dump...

Dump clean.

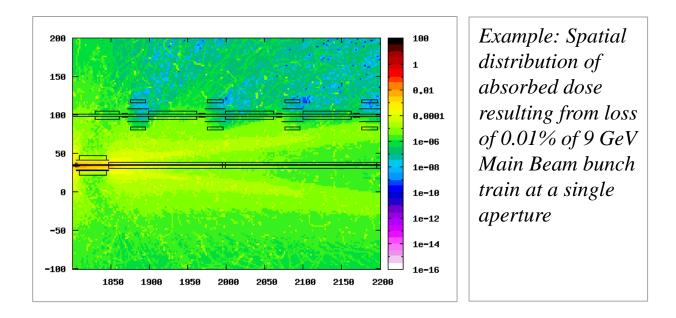
	HEADER				SUMMARY		
System	BIC		pmAnalysisModuleVersion	0.4.10			
lass	EVENT_SEQ		Analysis result description	First USR_PERMIT chang	e: Ch 12-PIC_MSK: A T -:	F on CIB.US15.	L1.B1
Source	ISA		Triggered BIC inputs	Ch 12-PIC_MSK(L1.B1),			1.82), Ch 5-PIC_UNM(L1.82), Ch
Event stamp	07:17:00.654 12/06/11		Beam 1 propagation delay to LBD	S 61000 ns			
Version	0.4.10		Beam 2 propagation delay to LBD	5 64000 ns			
Encoding	BIC/EVENT_SEQ		OVERALL	38 BICs triggered valid	PM data		
Qualifier							
Analysis flags	[NORMAL]						
			EVENT OVERVIEW			4	SOURCE OVERVIEW
Index Loc.P		Delta(uS			BIC name	Index	Source Name Data Valid
154		0	USER_PERMIT: Ch 12-PIC_M		CIB.US15.L1.B1	1	CIB.UA83.L8.B2 true
155		0	USER_PERMIT: Ch 12-PIC_M		CIB.US15.L1.B1	2	CIB.UJ56.R5.B1 true
156	07:17:00+656215	0	USER_PERMIT: Ch 5-PIC_UN		CIB.US15.L1.B1	3	CIB.UA83.L8.B1 true
157	07:17:00+656215	0	USER_PERMIT: Ch 5-PIC_UN		CIB.US15.L1.B1	4	CIB.UJ56.R5.B2 true
158	07:17:00+656215	0	USER_PERMIT: Ch 12-PIC_M		CIB.US15.L1.B2	5	CIB.US15.L1.B1 true
159	07:17:00+656215	0	USER_PERMIT: Ch 12-PIC_M		CIB.US15.L1.B2	6	CIB.US15.L1.B2 true
160	07:17:00+656215	0	USER_PERMIT: Ch 5-PIC_UN		CIB.US15.L1.B2	7	CIB.SR7.S7.B1 true
162	07:17:00+656216	1	USER_PERMIT: Ch 5-PIC_UN		CIB.US15.L1.B2 =	8	CIB.SR7.S7.B2 true
230	07:17:00+656279	64	USER_PERMIT: Ch 5-PIC_UN		CIB.US15.R1.B2	9	CIB.USC55.L5 true
231 2 36	07:17:00+656279	64	USER_PERMIT: Ch 5-PIC_UN		CIB.US15.R1.B1	10	CIB.UA87.R8 true
	07:17:00+656281	66	USER_PERMIT: Ch 12-PIC_M		CIB.US15.R1.B2	11	CIB.USC55.L5 true
238 📕	07:17:00+656281	66 66	USER_PERMIT: Ch 12-PIC_M		CIB.US15.R1.B2 CIB.US15.R1.B1	12 13	CIB.UA87.R8 true CIB.US15.R1.B1 true
257		67	USER_PERMIT: Ch 12-PIC_M		CIB.US15.R1.B1	14	CIB.US15.R1.B2 true
267		69	USER_PERMIT: Ch 12-PIC_W		CIB.US15.R1.B1	15	CIB.U[33.U3.B2 true
271	07:17:00+656284	69	USER_PERMIT: Ch 5-PIC_UN		CIB.US15.R1.B1	16	CIB.UJ33.U3.B1 true
336	07:17:00+656331	116	USER_PERMIT: Ch 4-BLM_U		CIB.UA63.L6.B2	17	CIB.UA63.L6.B2 true
337	07:17:00+656331	116	USER_PERMIT: Ch 4-BLM_U		CIB.UA63.L6.B2	18	CIB.UA63.L6.B1 true
346	07:17:00+656332	117	USER_PERMIT: Ch 4-BLM_U		CIB.UA63.L6.B1	19	CIB.SR3.S3.B2 true
347	07:17:00+656332	117	USER_PERMIT: Ch 4-BLM_U		CIB.UA63.L6.B1	20	CIB.SR8.INJ2.1 true
395		128	USER_PERMIT: Ch 11-BLM_		CIB.UA63.L6.B2	21	CIB.SR3.S3.B1 true
396		128	USER_PERMIT: Ch 11-BLM_		CIB.UA63.L6.B2	22	CIB.SR2.IN[1.1 true
400	07:17:00+656344	129	USER_PERMIT: Ch 11-BLM_		CIB.UA63.L6.B1	23	CIB.UA67.R6 true
401	07:17:00+656344	129	USER_PERMIT: Ch 11-BLM_		CIB.UA63.L6.B1	24	CIB.SR2.IN[1.2 true
647	07:17:00+656675	460	USER_PERMIT: Ch 8-BPMs L		CIB.UA67.R6.B2	25	CIB.UA67.R6 true
649	07:17:00+656678	463	USER_PERMIT: Ch 8-BPMs L		CIB.UA67.R6.B2	26	CIB.CCR.LHC.B1 true
661 📕	07:17:00+656687	472	LUSER_PERMIT: Ch 8-BPMs L		CIB.UA67.R6.B1 -	27	CIB.UA47.R4 true
565 ()))	07:17:00+656691	476	USER PERMIT: Ch.8-BPMs.I	&R syst "Δ" : R T → > F	CIB 11467 R6 B1	28	CIB.UA23.L2.B2 true
•					• •	29	CIB.CCR.LHC.B2 true
FILTER						30	CIB.UA47.R4 true
_						31	CIB.UA23.L2.B1 true
Beam_Per	mit_Loop 🔄 Beam_Permit 📃	Local_Permi	it 🗹 User_Permit 📃 User_Permit_Gl	itch 🗹 Software 📃 Ma	sk 🗹 Masked_Permit	32	CIB.UA43.L4.B2 true
🗌 Disab	led_Permit 🔲 Channel Enabl	e 🗌 Test 🗌	Power 🔲 Self_Test 📄 Time 🔲 Saf	e_Beam_Flag 🔲 Marker	lnjection BICs	33	CIB.UA43.L4.B1 true
						34	CIB.TZ76.U7.B2 true
	✓ Ch:	annel A 🗹 C	hannel B 🗹 Beam 1 🗹 Beam 2 🔲 0	renerator		35	CIB.TZ76.U7.B1 true
						36	CIB.SR8.INJ2.2 true

Triggered BIS Inputs: Ch 12-PIC MSK(L1.B1), Ch 5-PIC UNM(L1.B1), Ch 12-PIC_MSK(L1.B2), Ch 5-PIC UNM(L1.B2), Ch 5-PIC UNM(R1.B2), Ch 5-PIC UNM(R1.B1), Ch 12-PIC MSK(R1.B2), Ch 12-PIC MSK(R1.B1), Ch 4-BLM UNM(L6.B2), Ch 4-BLM UNM(L6.B1), Ch 11-BLM MSK(L6.B2), Ch 11-BLM_MSK(L6.B1), Ch 8-BPMs L&R syst.'A' (R6.B2), Ch 8-BPMs L&R syst.'A' (R6.B1), Ch 10-BPMs L&R syst.'B' (L6.B1) Ch 10-BPMs L&R syst.'B' (L6.B2) Ch 3-LBDS-b2(R6.B2), Ch 3-LBDS-b1(L6.B1), Ch 4-Vacuum b1b2(R1.B2), Ch 4-Vacuum b1b2(R1.B1), Ch 1-Vacuum b2(L1.B2), Ch 1-Vacuum b1(L1.B1)

Bruno PUCCIO

MP Workshop – 07 June 2012

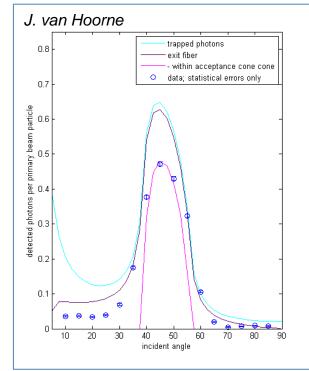
- o "Severeness " of CLIC beams understood (see Michel's introductory talk)
- Present study concentrated on main linac tunnel...in particular the two beam acceleration module (TBM)
 (choice motivated by the availability of technical integration and developments of the TBM, ...also the highest capital investment in the CLIC project
- o Baseline choice: One Ionization chamber per MB and DB quadrupole (i.e. About 50000 BLMs...aarrrgh, LHC has "only" 4000)
- o Pilot study to use Cherenkov radiation in fibres
- Pilot beam simulations in order to establish the signal levels in the two different detectors
- o First glance at MB and DB crosstalk


Sensitivity Requirements

- Standard Operational Losses (mainly due to beam gas scattering)
- FLUKA losses are distributed longitudinally
- Lower Limit of Dynamic Range: 1% loss limit for beam dynamics requirements (to detect onset of such losses)
 - 10⁻⁵ train distributed over MB linac, DB decelerator

Destructive Losses

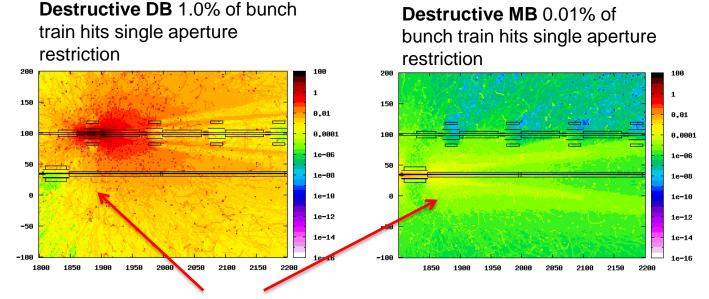
- Detect onset of Dangerous losses
- FLUKA Loss at single aperture
- Upper Limit of Dynamic Range, 10% destructive loss (desirable)
 - 0.1% DB bunch train, 0.001% bunch train MB


CDR Summary Table for BLMS

Machine Sub-Systems	Dynamic Range	Sensitivity (Gy/pulse)	Response time (ms)	Quantity	Recommended					
	М	ain Beam								
e ⁻ and e ⁺ injector complex	104	10-7	<8	85						
Pre-Damping and Damping Rings	10 ⁴	10 ⁻⁹ (Gy per millisecond)	1	1396	Insensitive to Synch. Rad.					
RTML	104	10-7	<8	1500						
Main Linac	106	10-9	<8	4196	Distinguish losses from DB					
Beam Delivery System (energy spoiler + collimator)	10 ⁶	10 ⁻³	<8	4						
Beam Delivery System (betatron spoilers + absorbers)	10 ⁵	10 ⁻³	<8	32						
Beam Delivery System (except collimators)	>10 ⁵	<10 ⁻⁵	<8	588						
Spent Beam Line	10 ⁶	10-7	<8	56						
Drive Beam										
Injector complex	5.10^4	5. 10 ⁻⁶	<8	4000						
Decelerator	5.10^{6}	5. 10 ⁻⁸	<8	41484	Distinguish losses from MB					
Dump lines	tbd	tbd	<8	48						

Cherenkov Fibers – Verification of Model

- Verification of Analytical Model at test beam lines
 - Test beams North Area, East Area
 - Fibers mounted on a rotable support, impacted by 120 GeV protons (North Area)
 - Angular Dependency
 - Diameter Dependency



Results for the angular dependency of the photon yield in a fiber with:

- d_{fiber}=0.365mm
- NA=0.22
- L_{fiber}~4m

Cross Talk Issues

- Desirable to distinguish between a failure loss from each of the beams
- Spatial Distribution of prompt Absorbed Dose (Gy) from FLUKA Simulations:

- Loss of 1.0% in DB provokes similar signal as a loss of 0.01% of MB in region close to MB quadrupole.
- NOT a Machine Protection Issue Dangerous loss would never go unnoticed
- Compare signals from both fibers each side to distinguish Main and Drive Beam losses.

My comments:

-The main linac tunnel is "protectable", any onset of dangerous losses in the DB or MB can be detected

-The required dynamic range looks very high; it should be better understood if this is required on a single pulse basis, or by integration, or if a limited dynamic range is possible for different machine operations: single bunch, DB only

-Like for the LHC I consider the diagnostics potential of the BLM system equally important to the basic MP function:

i.e. Resolution in "s" down to each quadrupole (DB = 1m)

Almost full diagnostics potential must be available on operational beams

Crosstalk MB<->DB for me is the major concern

Summary:

1) Fail-Save, Highly Reliability, High Availability Engineering is a specific engineering discipline, which needs

- highly skilled and specifically trained people

- Lots of them

-has to be conveyed from the presently running high energy machines to the new ones
- the teams need to be involved very early in the beam dynamics considerations and into the diagnostic needs of the machine

-2) The MP systems are complex and distributed...also very expensive. 2..5% of the total accelerator cost have to be accepted by managers

-3) The link to beam diagnostics and machine operation is essential:
High quality beam instrumentation
(Quote Lyn Evans: "Never economize on beam instrumentation",
best use of instruments by operations teams and an effort to analyze the acquired data and do the follow up is the basis for good machine protection.