LC availability

Tom Himelcoordinator/modeller SLAC

> A study commissioned by the US Linear Collider Steering Group

> > Marc Ross – SLAC TESLA coll. mtg, 16.09.03

Contributors

- ✗ Tom Himel (chair)
- 🗯 Paul Czarapata
- 🗮 Helen Edwards
- 🗯 Markus Hüning
- 🗯 Nan Phinney
- 🗯 Marc Ross

Contents

Our approach to estimating an accelerator's availability

- ★ The simulation
- **★** The state of the input data
- ***** Very preliminary results

🗯 Plans

Overall plan of Attack

- * Write a simulation that given the MTBFs, MTTRs, numbers and redundancies of components, and access requirements for repair can calculate average availability and the integrated luminosity per year. Luminosity will mostly be either design or zero in this simulation.
- Collect data on MTBFs and MTBRs of components in existing machines to guide our budgeting process
- * Make up a reasonable set of MTBFs that give a reasonable overall availability.
- Iterate as many times as we have time for (probably once during this task force) to minimize the overall cost of the LC while maintaining the goal availability

Improvements to the Simulation

- Implemented Excel macros and Matlab code to ease burden of maintaining input decks
 - Copies sub-decks together, clones e+ from e- decks, reads and formats results
- Finished implementing "kludge" repairs where you ameliorate a problem but don't fully fix it until the next long down.
- Many small changes to input deck. More coming.Account for Machine Development Time

Why a simulation?

- * We chose to go with a simulation instead of a spreadsheet calculation for the following reasons:
 - Including tuning and recovery times in a spreadsheet calculation is difficult.
 - Fixing many things at once (during an access) is also difficult to put in a simple spreadsheet formula.
 - If later, one wants to more carefully model luminosity degradation on recovery from downtimes a simulation is simpler
 - A disadvantage of a simulation is its use of random numbers so one needs high enough statistics go get a meaningful answer. This is particularly a concern if one wants to compare two slightly different cases. Random number seeds will be handled in a way to allow meaningful comparisons of similar cases.

Simulation overview

- ★ About 1100 lines of Matlab code
- Reads an Excel spreadsheet with data that describes the accelerator
- * Lets things break according to their MTBFs
- Evaluates how the accelerator performance degrades
- ***** Schedules repairs when performance is too poor
- Does crude accounting of retuning time after a repair. Accrues opportunistic machine development time.
- Outputs a comma delimited file for import to Excel that has the downtime caused by each device.

Accelerator parameters

- * The simulation keeps track of various accelerator parameters which degrade as components break. Examples:
 - •e- linac energy overhead
 - +e+ damping ring extraction kicker strength
 - •e- damping ring RF voltage
 - Luminosity
- If a parameter gets below its minimum allowed value, the LC is declared broken and repairs are scheduled.

Actual parameter input sheet

name	design	minimum		
luminosity	1.00E+34	5.00E+33		
e- energy overhead	5000	0		
e+ energy overhead	5000	0		
e- DR RF HV	54	49.49955		
e+ DR RF HV	54	49.49955		
e- DR inj kick	0.63003	0.6		
e- DR ext kick	0.63003	0.6		
e+ DR inj kick	0.63003	0.6		
e+ DR ext kick	0.63003	0.6		

2% energy overhead

11 of 12 RF cavities

20 of 21 working inj and extraction kickers

Few lines of Actual Component Input Sheet

					1			•						
											Still			
											broke		n	
rank in		subsys/se		problem		parameter		-				needed	repair	rand
	component name	gment	region	name	quantity	e ffe cte d	mult		MTBF		repair	?	people	seed
1	beamline component	beamline	e+ comp	broken	1	luminosity	mult	0	3.00E+04	8		1	2	
1	off beamline component	beamline	e+ comp	broken	1	luminosity	mult	0	1.50E+03	1		0	2	
2	Quads	beamline	e- linac	broken	253	luminosity	mult	0.00	1.00E+08	2	quad or	0	1	22
3	Corrs	beamline	e- linac	broken	379	luminosity	mult	0.00	1.00E+08	0.5	quad or	0	1	23
3	quad or corr	beamline	e- linac	retuned	632	luminosity	mult	0.99	1.00E+50	2		0	2	24
4	Power supplies - bend	beamline	e- linac	broken	3	luminosity	mult	0.00	2.00E+05	2		0	2	25
4	Power supplies - quad	beamline	e- linac	broken	253	luminosity	mult	0.00	2.00E+05	2	quad or	0	2	219
4	Power supplies - corr	beamline	e- linac	broken	379	luminosity	mult	0.00	2.00E+05	0.5	quad or	0	1	26
5	PS controller - bend	beamline	e- linac	broken	3	luminosity	mult	0.00	5.00E+05	1		0	1	27
9	Water pumps	beamline	e- linac	broken	3	luminosity	mult	0.00	1.20E+05	4		1	2	32
10	Water	beamline	e- linac	broken	3	luminosity	mult	0.00	3.00E+04	2		1	2	33
11	Flow Switch	beamline	e- linac	broken	6	luminosity	mult	0.00	2.30E+05	1		1	2	34
1	Cavities	cavity	e- linac	degrade	7152	e- energy o	add	-12.00	1.00E+08	336		1	2	
1.1	Cavities	cavity	e- linac	broken	7152	e- energy o	add	-36.33	1.00E+08	336		1	4	36
2	Cavity tuner	cavity	e- linac	broken	7152	e- energy o	add	-36.33	5.00E+05	336		1	4	37
3	Cavity piezo tuner	cavity	e- linac	broken	7152	e- energy o	add	-12.00	5.00E+05	2	power c	1	4	38
4	LLRF	cavity	e- linac	broken	7152	e- energy o	add	-36.33	1.00E+05	1		0	1	39
1	power coupler	coupler	e- linac	degrade	7152	e- energy o	add	-288.00	1.00E+07	2	power c	1	2	40
1.1	power coupler	coupler	e- linac	broken	7152	e- energy o	add	-871.92	1.00E+07	2	power c	1	2	41
1.1	power coupler disc	coupler	e- linac	disc	7152	e- energy o	add	-36.33	1.00E+50	336		1	4	
1	Klystrons	klystron	e- linac	broken	293	e- energy o	add	-871.92	4.00E+04	8		-1	2	63
1.5	pulse transformers	klystron	e- linac	broken	293	e- energy o	add	-871.92	1.00E+05	4		-1	2	222
2	Modulators	klystron	e- linac	broken	293	e- energy o	add	-871.92	2.00E+04	2		0	2	64
2.5	pulse cables	klystron	e- linac	broken	293	e- energy o	add	-871.92	1.00E+06	4		0	2	65
2	Quads	beamline	e- DR	broken	849	luminosity	mult	0.00	4.90E+06	8		1	2	77
3	Sextupoles	beamline	e- DR	broken	312	luminosity	mult	0.00	4.90E+06	8		1	2	78
4	Corrs	beamline	e- DR	broken	629	luminosity	mult	0.00	1.00E+08	0.5	quad or	0	2	. 79
5	Wigglers	beamline	e- DR	broken	90	luminosity	mult	0.00	4.90E+05	8		1	2	80

Component Sheet Columns Defined

Not used by simulation. Helps sheet organization

Not used by simulation. Helps sheet organization

Allows for problems with different consequences

Affect on the parameter is additive or multiplicative

Amount the parameter is degraded for each broken device

Part of the accelerator, e.g. e- linac or e+ source

e.g. klystron or modulator or bend magnet

Total number of this device in this region

e.g. e- energy overhead or luminosity

- Rank in subsys: ж
- Component name **米**
- Subsys/segment: ж
- Region: ж
- Problem name: **※**
- Quantity: ж
- ж Parameter effected:
- Add/mult: *
- Degradation: ※
- ¥¥ MTBF:
- Mean Time Between Failures (hours) Mean Time To Repair (hours) not including time to access & recover MTTR: *****
- Still broken after repair: Component name of what is still broken after a kludged 米 repair is complete. E.g. corrector supply still needs to be fixed after temporary fix of steering around it. (Not implemented yet)
- =1 means access to the accelerator tunnel is needed for a repair Access needed: * =0 means no access is needed, but accelerator is down during repair
 - =-1 means component is hot swappable e.g. a klystron in 2 tunnel case.
- n repair people: number of people needed to repair a component **米** (specialties are ignored)
- Allows use of same random numbers even when a new component Rand seed: * line is added

Marc Ross – for Tom Himel (SLAC) – TESLA Collaboration meeting, 16.09.03

Use of Spreadsheet Magic

- Change from 1 to 2 tunnels by changing a single cell. Formulas adjust the access needed column
- * Formulas and references to named cells are used for numbers of components, MTTRs, degradations...
- * A sheet contains the linac components. It changes from the e+ to the e- linac by changing a single cell. Ditto for the DR.

	4 Power supplies - corr	beamline e+ linac broken	379 luminosity mult	0 200000	0.5 0	0 1 124	10.2	24.5	8.8	1.8	1.8		8.4 10.2		1.8	
	5 PS controller - bend 5 PS controller - quad	beamline e+ linac broken beamline e+ linac broken	3 luminosity mult 253 luminosity mult	0 500000 0 500000	1 0 2 0	0 1 224 0 1 125	0	0 6.7	0 9.5	0	0 9.5	0	0 0 5.8 9		0 10.6	
125	5 PS controller - corr	beamline e+ linac broken	379 luminosity mult	0 500000	0.5 0	0 1 126	4	2.2	2.4	2.7	3.8		3.3 4	4.4	4	
126	6 Vac Mech device 7 VacP	beamline e+ linac broken beamline e+ linac broken	6 luminosity mult 596 luminosity mult	0 100000 1 100000	8 0 2 0	1 2 127 1 2 128	0	0	0	0	0	40.1 0	0 0	-	0	
128	8 VacV	beamline e+ linac broken	4 luminosity mult	0 200000	2 0	1 2 129	5.6	0	0	12.1	11.2	0 .	33 - 56	47	14	
129	9 Water pumps 10 Water	beamline e+ linac broken beamline e+ linac broken	3 luminosity mult	0 120000	4 0	1 2 130	0	0	0	0	20	0		0	0	
131 1	11 Flow Switch	beamline e+ linac broken	6 uminosity mult	0 230000		2 32	5.6		5	4			2.7 5.6		ee	T
132	1 Cavities 1 Cavities	cavity e+ linac degrade	7152 e+ energy cade	-12 1E+08 -36.33 1E+09	1 0 336 0 336 0	1 2 33	0		2					P	0	
134	2 Cavity tuner	eavity e+ linae broken	V152 Prenergy cade	-36.33 500000	36	4 4 35										
	3 Cavity piezo tuner 4 LLRF	cavity e+ linac broken cavity e+ linac broken	7152 e+ energy cadd 7152 e+ energy cadd	-12 500000 -36.33 100000	2 power ci 1 0	1 4 36 0 1 97	0.7 21.6	0 10.6	0	0 13	0 28.8	0 18.6	0 0 4.6 20.2	0 15.5	1.4 3.5	
137	1 power coupler	coupler e+ linac degrade	7152 e+ energy cadd	-288 10000000	2 power ci	1 2 138	0.9	5.6	0	0	0	7.5 0	0.6 5.6	0.9	0.7	
138 1	.1 power coupler .1 power coupler disc	coupler e+ linac broken coupler e+ linac disc	7152 e+ energy cadd 7152 e+ energy cadd	-871.92 10000000 -36.33 1E+50	2 power ci 336 0	1 2 139 1 4 140	12.6 0	5.6 0	5.6 0	0	16.3 0	0 2	2.7 7 0 0		0.7	
140	2 coupler interlocks	coupler e+ linac broken	7152 e+ energy cadd	-871.92 1000000	1 0	-1 1 141	0	115.1	41.4	157.2	87.5	62.3	0 0	0	0	
	3 VacP 1 cryo vac enclosure	coupler e+ linac broken cryo segmere+ linac broken	596 e+ energy cadd	-871.92 1000000 0 100000	4 0 8 0	1 2 142 1 4 143	3.2 18.6	0	12.9 13	20.4	7.5 14		2.6 2.3 0 18.6		6.3 0	
143	2 insulating vacuumP	cryo string e+ linac leak	4 luminosity mult 59.6 e+ energy cadd	-4359.6 300000	8 0	1 2 144	42.9	25.6	0.9	21.5	1.4		50 322		12.6	
144	1 cryo JT valve 1 BPMs	cryo string e+ linac broken diagnostic e+ linac broken	59.6 e+ energy cadd 300 luminosity mult	-4359.6 300000 0.99 500000	8	$\frac{1}{1}$ $\frac{2}{1}$ $\frac{145}{1}$	7	12.1			2.3		^{3.9}	7 2 1 9 0 0		NPO
146	2 laser wires	diagnostic e+ linac broken	12 luminosity mult	0.95 100000	2 0	1 2 14			0		0	õ	ee	0	jõ	ere
147	3 Kicker pulser 3 wires	diagnostic e+ linac broken diagnostic e+ linac broken	1 luminosity mult 0 luminosity mult	0.95 6600 0.95 100000	4 40 -	2 148					0	0		0	G	
149	4 Kicker	diagnostic e+ linac broken	1 luminosity mult	0.95 100000	8 0	1 2 150	0	0	0	0	0	0	0 0	0	0	
	1 Klystrons .5 pulse transformers	first klystron e+ linac broken first klystron e+ linac broken	5 luminosity mult 5 luminosity mult	0 40000 0 20000	8 0 2 0	-1 0 2 151	0		5 7 22 7.5	0	C			70	0	
152	2 Modulators	first klystron e+ linac broken	5 luminosity mult	0 20000	2 0	0 2 225 0 2 152 0 2 53 0 1 54	a	.5	7		69 .9 7 0	6.	i 🕇 🕻	5.		et
153 2	.5 pulse cables	first klystron e+ linac broken	5 luminosity mult	0 100000	4 0 1 0	0		.6	22		7					
155	3 klys pre-amp 4 VacG/Ctrl	first klystron e+ linac broken first klystron e+ linac broken	5 luminosity mult 5 luminosity mult	0 100000 0 100000	1 U 1 O	0 1 155	1.6	10.3	13	10.3	13	0 (0.7 1.6	1	1.6) – –
156	5 VacP 6 Water pumps	first klystron e+ linac broken	5 luminosity mult	0 100000	1 0 4 0	0 2 156	0	0	0 11.2	0 11.2	0 11.2	26.1	0 0 2.1 5.6		0 5.6	
158	7 Water	first klystron e+ linac broken first klystron e+ linac broken	2 luminosity mult 2 luminosity mult	0 120000	2 0	0 2 158	5. 0.		5.6	11.2 5.6			2.1 5.6 0.6 0.9		2.3	
159	8 Flow Switch	first klystron e+ linac broken	6 luminosity mult	0 230000	1 0 4 0	0 1 9	0.		7.5	0	7.5		0.6 0.9		1.1	
160	9 Electrical - >0.5 1 Klystrons	first klystron e+ linac broken klystron e+ linac broken	2 luminosity mult 293 e+ energy cadd	0 360000 -871.92 40000	4 0 8 0	-1 2 4	C _{31.0}	139.5	59.6	0 114.3	0 87.8	0 80.2 40	0 0 0.7 68.4		0 37.3	
162 1	.5 pulse transformers	klystron e+ linac broken	293 e+ energy cadd	-871.92 100000	4 0	-1 2 226		55.9	7	37.3	30.8	3.7 1	3.2 25.1	20.2	14.7	
163 164 2 165	2 Modulators .5 pulse cables	klystron e+ linac broken klystron e+ linac broken	293 e+ energy cadd 293 e+ energy cadd	-871.92 20000 -871.92 1000000	2 0 4 0	0 2 162 0 2 163	65.6 1.4	35.3 1.4	15.4 0	65.2 11.2	47.4 0		7.2 68.2 2.7 1.4		41.8 2.8	
165	3 klys pre-amp	klystron e+ linac broken	293 e+ energy cadd	-871.92 100000	1 0	0 1 164	9.8	61.6	29.8	61.2			6.9 10.2	9.3	8.6	
	4 VacG/Ctrl 5 VacP	klystron e+ linac broken klystron e+ linac broken	293 e+ energy cadd 293 e+ energy cadd	-871.92 100000 -871.92 100000	1 0 1 0	0 1 165 0 2 166	4.5 7.2	22.3 47.4	3.7 22.4	77.7 68.6	54.9 35.3		3.3 6.5 5.5 7.9		1.4 3.5	
168	6 Water pumps	klystron e+ linac broken	146 e+ energy cadd	-1743.84 120000	4	0 2	58.1	97.6	36.4	144.7	69.5	60.6 20	66 772	39	32.8	$\mathbf{\Omega}$
170	7 Water 8 Flow Switch	klystron e+ linac broken klystron e+ linac broken	146 e+ energy cadd 438 e+ energy cadd	-1743.84 30000 -871.92 230000	2	0 2 168 1 169 2 170	5	3	3 .3	250.7 5.5 4 35.3	177.8 1.8 0 3.3 55.3	15.9	3 0 1.5 6.8 39.5	5		
171	9 Electrical - >0.5	klystron e+ linac broken	146 e+ energy cadd	-1743.84 360000	4	2 170	12.			4	0	0	2 2.6			
173	1 controls backbone 2 timing	sector e+ linac broken sector e+ linac broken	298 luminosity mult 305 luminosity mult	0 100000 0 100000	1 0	0 1 172	39.1	239.9	-21.9 277.2	4.8	3 .3 55.3	28 21	1.5 52.2 6.8 39.5	38. 4 35.5	8.5	· · /
174	1 Electrical05<<0.5	Utility power e+ linac broken	305 luminosity mult	0 100000	2 0	0 1 173	73.4	237	283.6	41.5	46.4	39.2 5	1.5 72.5	64.5	11.1	
	1 Bends 2 Quads	beamline e+ DR broken beamline e+ DR broken	216 luminosity mult 849 luminosity mult	0 4900000 0 4900000	8 0 8 0	1 2 74	101	6	39.6	0	107	294 4	3.9 0 	95.2	131.9	
177	3 Sextupoles	beamline e+ DR broken	312 luminosity mult	0 4900000	8 0	1 176		6 0 0	39	0 .3 0 0	107	Ôľ			0	
	4 Corrs 5 Wigglers	beamline e+ DR broken beamline e+ DR broken	629 luminosity mult 90 luminosity mult	0 1E+08 0 490000	0.5 quad or 8 0	0 2 77	10.2	9	- 4	0	24.2		9.2 18.2		20	
180	6 Kickers - injection	beamline e+ DR broken	21 e+ DR inj k add	-0.03 100000	8 0	1 2 179	0	0	0	0	0	0	0 0	0	0	
181	7 Kickers - extraction 8 Power supplies strings	beamline e+ DR broken beamline e+ DR broken	21 e+ DR ext kadd 36 luminosity mult	-0.03 100000 0 40000	8 0 2 0	1 2 180 0 2 181	11.2 29.7	11.2 20.3	0 24.8	0	30.8 0		1.7 9.9 7.7 29.7		20.5 0	
183	9 Power supplies Corrs	beamline e+ DR broken	629 luminosity mult	0 40000	0.5 quad or	0 1 183	104.4	78.8	86.6	9.3	9.6		8.8 105.9		12.3	
	10 PS controller ex. corr 11 PS controller - corr	beamline e+ DR broken beamline e+ DR broken	36 luminosity mult 629 luminosity mult	0 500000 0 500000	1 0 0.5 quad or	0 1 185 0 1 186	1.3 9.3	1.2 129.1	1.2 161.3	0 24.9	0 37.3		0.7 1.3 5.5 9.3		0.7 1.8	
186 1	12 Vac Mech device	beamline e+ DR broken	4 luminosity mult	0 100000	8 0	1 2 187	11.2	7	11.2	7	11.2	16.9	3.9 7	7	16.8	
188 1	13 VacP 14 VacV	beamline e+ DR broken beamline e+ DR broken	2048 luminosity mult 125 luminosity mult	1 100000 0 600000	2 0 2 0	1 2 188 1 2 189	0 50.3	0 28.9	0 36.3	0 11.2	0 35.4	0 28.9	0 0 19 38.5		0 50.3	
189 1	15 Water pumps	beamline e+ DR broken	6 luminosity mult	0 120000	4 0	1 2 190	7.5	0	0	11.2	11.2	8.2	2.7 5.6	4.7	8.2	
191 1	16 Water 17 Flow Switch	beamline e+ DR broken beamline e+ DR broken	6 luminosity mult 12 luminosity mult	0 30000 0 230000	2 0 1 0	0 2 191 1 2 192	7.7 0	16.3 0	18.4 7.5	22.6 0	38 8.4		4.6 7.7 2.1 0		9.6 5.6	
192	1 Cavities	cavity e+ DR broken	12 e+ DR RF ladd	-4.5 1E+08	336 0	1 2 193	0	0	0	0	0	0	0 0	0	0	
194	2 LLRF 3 power coupler	cavity e+ DR broken coupler e+ DR broken	12 e+ DR RF Fadd 12 e+ DR RF Fadd	-4.5 100000 -18 10000000	1 0 336 0	0 1 194 1 2 195	0	0	0	0	0	0	0 0		0	
195	4 coupler interlocks	coupler e+ DR broken	12 e+ DR RF ladd	-18 1000000	1 0	1 1 196	0	0	0	0	0	0	0 0	0	0	
197	5 VacP 6 insulating vacuumP	coupler e+ DR broken cryo module e+ DR leak	24 e+ DR RF ladd 4 e+ DR RF ladd	-18 1000000 -18 100000	4 0 8 0	1 2 197 1 2 198	0	0	0	0 11.2	0 11.2	0 11.2 0	0 0 6.2 0		5.6 11.2	
198	7 cryo vac enclosure	cryo module e+ DR broken	4 e+ DR RF ladd	-18 100000	8 0	1 2 199	14.9	11.2	7	11.2	7	22.4	4.6 11.3		18.6	
199 200	1 BPMs 2 laser wires	diagnostic e+ DR broken diagnostic e+ DR broken	1251 luminosity mult 2 luminosity mult	0.99 500000 0.95 100000	1 0 2 0	0 1 200 0 1 201	0	0	0	0	0	0	0 0		0	
201	3 Kicker pulser	diagnostic e+ DR broken	0 luminosity mult	0.95 6500	4 0	0 2 202	0	0	ō	0	0	0	0 0	0	0	
203	3 wires 4 Kicker	diagnostic e+ DR broken diagnostic e+ DR broken	0 luminosity mult 0 luminosity mult	0.95 100000 0.95 7000	2 0 8 0	0 2 203 1 2 204	0	0	0	0	0	0	0 0	-	0	
204	1 Klystrons	klystron e+ DR broken	3 e+ DR RF ladd	-18 40000	4 0	0 2 205	28	15.8	17.7	11.2	23.3	6.5	9.5 25.2	17.5	28	
	2 Modulators 3 klys pre-amp	klystron e+ DR broken klystron e+ DR broken	3 e+ DR RF Fadd 3 e+ DR RF Fadd	-18 20000 -18 100000	2 0 1 0	0 2 206 0 1 207	3.5 0	3.5 0	3.7 0	3.5 1.2	5.2 1.2		3.3 3.5 0.3 0		6.6 1.4	
207	4 VacG/Ctrl	klystron e+ DR broken	3 e+ DR RF ladd	-18 100000	1 0	0 1 208	0.7	0.6	0.6	0.6	0	0.6	0.3 0.7	0.6	0.7	
208	5 VacP 6 Water pumps	klystron e+ DR broken klystron e+ DR broken	6 e+ DR RF Fadd 3 e+ DR RF Fadd	-18 100000 -18 120000	1 0 4 0	0 2 209 0 2 210	0.7 5.6	0.6 5.6	0.6 5.6	0.6 0	0.6 0		0.3 0.7 2.1 5.6		0.7 5.6	
210	7 Water	klystron e+ DR broken	3 e+ DR RF ladd	-18 30000	2 0	0 2 211	2.3	1.2	1.2	3.7	1.2	2.6	2 2.3	2.3	3.7	
211	8 Flow Switch 9 Electrical - >0.5	klystron e+ DR broken klystron e+ DR broken	6 e+ DR RF Fadd 3 e+ DR RF Fadd	-18 230000 -18 360000	1 0 4 0	0 1 212 0 2 213	0	0	0	0	0	0	0 0		0	
213	1 controls backbone	sector e+ DR broken	3 luminosity mult	0 100000	1 0	0 1 214	0	0	0	0	0	5.6	0 0	0	0	
	2 timing 1 Electrical05<<0.5	sector e+ DR broken Utility power e+ DR broken	3 luminosity mult 3 luminosity mult	0 100000 0 100000	1 0 2 0	0 1 215 0 1 216	0.6 1.2	7.5	7.5	0	0		0.3 0.6 0.7 1.2		0	
216	total down	e+ DR dummy	0 luminosity mult	1 1.00E+50	1	0 0 217	2526.3	4542		3694.9	2679 20	697.8 135	9.5 2468.1	1980.7	1557 total down	
217	#access per month	e+ DR dummy	0 luminosity mult	1 1.00E+50	1	0 0 218	2.871	14.07	12.1	10.06	6.4	6.07 3.4	41 2.937	3.287	2.279 #access p	er month

Marc Ross – for Tom Himel (SLAC) – TESLA Collaboration meeting, 16.09.03

Modeling breakdowns

- * At initialization calculate the next time each component will break.
 - Average time is MTBF/(number of the component)
 - Throw a random number with an exponential distribution with the above average.
- * When that time comes, degrade the corresponding parameter and calculate the next time one will break.
- * If that parameter is too far degraded, then immediately plan and start repairs.
- * All the downtime and recovery time from the repairs is accounted to the component which put us over the edge even though other components will also be repaired.
- * To keep things simple, if something breaks when we are in the middle of repairs, it is just ignored. In real life, sometimes it would be noticed and fixed, and other times it would contribute to the recovery time.

Downtime planning

- * This is without doubt the most complicated part of the simulation.
- * Anyone who has participated in a downtime scheduling meeting will understand why.
- * And computers don't get a gestalt of the situation like humans can.
- # It's hopefully good enough

Downtime planning

- Check each component to see if by itself it "breaks" the accelerator. If there is then fix all of those components. For example if 2 DR kickers are broken then they would both be scheduled for repair.
- 2. Next we handle the case where multiple components together break the accelerator. For example, broken klystrons and cavity tuners both reduce the energy, but only together do they reduce it enough to run out of energy headroom.
 - Loop through the components in order of increasing "bang for the buck" (improvement per repair hour)
 - * Accumulate parameter degradation (e.g. linac energy overhead)
 - * Repair all components after the degradation gets too big
 - * This gets the accelerator fixed in the minimum possible time.

Downtime planning

- 3. The above repairs are scheduled taking into account the available number of repair people (set to 25 in the accelerator tunnel and 100 outside it) and the access times for the regions. These repairs are enough to make the accelerator work again. Note that the fact that repair people have specialties has been ignored to keep things simple.
- 4. Now schedule extra repairs .
 - In this case, we plan repairs which give the most "bang for the buck" first.
 - Keep scheduling things until it would extend the downtime by too much (set to 50% if no access is being done and a factor of two if there is an access)
 - Note there is no logic to decide which degraded parameter should be addressed first. Hence the simulation could choose to repair e- linac klystrons before e+ linac klystrons even though there happens to be less headroom in the e+ linac.

Regions and PPS zones

name	ppszone	upstream	accesshours	recoverhours	tunetimefraction	start of beamline
none	none	none	0	0	0	0
e- injector	e- injector	none	2	1	0.1	1
e- DR	e- linac	e- injector	3	1	0.2	0
e- compressor	e- linac	e- DR	3	1	0.1	0
e- linac	e- linac	e- compressor	3	1	0.1	0
e- BDS	e- BDS	e- linac	3	1	0.1	0
e+ source	e+ source	e- linac	2	1	0.1	1
e+ DR	e+ linac	e+ source	3	1	0.2	0
e+ compressor	e+ linac	e+ DR	3	1	0.1	0
e+ linac	e+ linac	e+ compressor	3	1	0.1	0
e+ BDS	e+ BDS	e+ linac	3	1	0.1	0
IP	IP	e+ BDS	1	1	0.2	0

- * Two regions are in the same PPS zone if access to one of them means there can be no beam in the other. E.g. with the DR and linac in the same tunnel, they are in the same PPS zone.
- * "Upstream" indicates the order the beam goes through the regions.
- * "tunetimefraction" is used for the crude way we simulate recovery from a downtime. The time with no beam in a region times the tunetimefraction gives the time it takes to get good beam to the end of that region. At that time tuning can begin in the next downstream region.

Marc Ross – for Tom Himel (SLAC) – TESLA Collaboration meeting, 16.09.03

Modeling recovery

- ★ It is assumed that everything goes exactly according to schedule and the exact MTTRs are used as repair times (no random numbers thrown for this).
- Hence the time work will be done in each region and PPS zone is easily determined.
- Working our way downstream from each injector, we see how long the region has been without beam, use tunetimefraction to calculate when beam will be at the end of the region and then go on to the next region.
- ✗ If the next region is still undergoing repairs that will continue for more than 2 hours, we assume opportunistic machine development will be done in the part of the accelerator with beam.

Modeling Long shutdowns

- ***** This is very simple.
- Every 9 months (an input parameter) all devices which take more than 300 hours to repair are instantaneously repaired.

🗯 That's it.

- * Other devices are not repaired as some probably break during the long shutdown anyway.
- Recovery from a long shutdown is not modeled. This should be done by hand when estimating annual integrated luminosity. For a 3 month shutdown, assuming 1.5 months with no luminosity would do a good job of mimicking the probably 3 month slow recovery of luminosity.

Misc Parameter sheet

variable name	value			um number o					nake	
maxaccess	25			s. We assume Illing access vi			e control ro	om chaos		
maxpeopleoutside	100			Maximum nur			epairs outs	ide the acc	elerator	
maxmaintpeople	20			tunnel when t	+		coople mak	ing routing	rapaire	
simhours	32850	Number of h	Maximum number of people making routine that can be done while the accelerator is run							
runhours	6570		ength (in hours) of a "run". A "run" is the time between long (e.g. 3 month) down times. In the							
randseed	5		, items which take							<mark>en.</mark>
extrarepairtimefacto	or11.5		ndom number seed							
extrarepairtimefacto	or2 2	Factor by wh	times of a component will not change from one run to the next even if other components are added. Actor by which we are willing to extend a down period which did NOT require and access in order							
allowaccesshours	8	to fix some e	-							
minMDhours	2		y which we are will n order to fix some			od which DI	D require a	nd		
traceprtlevel	3					t require ar	access is g	reater that	<mark>n this, ther</mark>	
tracefilename	trace.da	If the total time to repair something that did not require an access is greater than this, then allow an access to do other useful repairs								
resultsfilename	availres		, <mark>ne downstream par</mark>	t of the LC is c	down for mo	re than this	number of	hours, then	assume	
runname	2 tunne		ful Machine Develo	pment (MD) c	an be done i	n the upstre	am portion	during tha	<mark>t time</mark>	
									<u> </u>	—
results y Should H extension	e where the will be output. have an on of .csv to nport to Excel									
									<u> </u>	

State of input data

- * Only DRs and linacs are modeled in detail
- * Have reasonably good parts counts
 - Some components could still be missing (definitely pulsed cables and 3 stub tuners)
 - Need to make clearer definitions of each component: e.g. are transducers considered part of the power supply, the controller, or as a separate part.
- ✗ MTTRs may be good to a factor of 2.
- ★ Just learning the consequences when a part breaks was far more difficult then expected and still needs more work.
- ✗ In 2 tunnel design, we assume all electronics are in the support tunnel.
- ✗ In 1 tunnel design, we assume AC power distribution, timing and controls backbones are all in the accelerator tunnel.
- * Tuning model assumes there is a tune-up dump at the end of each region.

Marc Ross – for Tom Himel (SLAC) – TESLA Collaboration meeting, 16.09.03

All Results are Incredibly Preliminary

- ✗ Many MTBFs are just defaulted to 100k hours
- Haven't budgeted enough of the unavailability to the non-DR, linac regions
- Haven't explicitly put in the long pulsed HV cables for the 1 tunnel design.
- Almost NO optimization of the MTBFs has been done
 - Just took initial set of MTBFs, used the simulation to see which components made major contributions to the downtime and then increased their MTBFs.
- # Haven't checked many sensitivities e.g. to the number of repair people.

Marc Ross – for Tom Himel (SLAC) – TESLA Collaboration meeting, 16.09.03

Results can be useful anyway

- They highlight the components whose MTBFs must be increased.
- * The general magnitude (and sign) of availability changes with major design changes should be reasonable.
 - •At present have done too few runs to judge how sensitive these changes are too other inputs.
 - There are so many inputs, hopefully their errors average out.

Machine Development time Budget

- We budget % of time needed for MD in each region.
- Note conventional e+ source allows simultaneous MD in e.g. both DRs.
- Some MD will get done opportunistically while other parts of accel are down.
- * Rest must be scheduled.

	%MD time	%MD
name	warm	time cold
e- injector	1	1
e- DR	2	2
e- compressor	1	1
e- linac	1	1
e- BDS	1	1
e+ source	1	1
e+ PDR	1	0
e+ DR	2	2
e+ compressor	1	1
e+ linac	1	1
e+ BDS	1	1
IP	1	1
total conv e+ source	8	7
total wiggler e+ source	13	12

Lumped Availability Budgets

- Due to time constraints, only linacs and DRs were modeled in detail.
- Here are downtime budgetswe assigned to other systems.
- Actually unavailabilities will be roughly double these numbers due to recovery times.
- Total unavail goal is 25%.
 10% contingency is unbudgeted, leaving 15% to budget.

	warm	cold
	nominal %	nominal %
region	downtime	downtime
e- injector	0.48	0.36
e- compressor	0.48	0.36
e- BDS	0.48	0.36
e+ source	0.48	0.36
e+ PDR	0.48	1.00E-40
e+ compressor	0.48	0.36
e+ BDS	0.48	0.36
IP	0.48	0.36
cryo plant	1.00E-40	1
site power	0.5	0.5
Sum	4.34	4.02
2*Sum	8.68	8.04

Warm results – MTBF budget

run numb		% time fully up integrati ng lum or sched	-	sch edul ed	% time actual opport unistic	% time usele ss	nt	MTBF	MTBF	
er	MD	MD	lum	MD	MD			before	now	devices
warm1	31.8	68.2	59.5	8.7	4.3	27.5				initial run with nominal MTBFs
							10	1.00E+06	1.00E+07	all water cooled magnets
							5	5.00E+04	2.50E+05	DR Q movers
							10	2.00E+05	2.00E+06	large Power Supplies
										electronics modules esp PS controllers
							3	2.50E+05	7.50E+05	flowswitches
										first klystrons and related hardware
										(should be done with redundancy)
warm2	20.5	79.5	70.6	8.9	4.08	16.4	5	3.60E+05	1.80E+06	small electrical < 0.5 MW
										all water cooled magnets (total
								1		improvement)
							5	5.00E+04	2.50E+05	linac RF movers
										electronics modules esp PS controllers
										(total improvement)
warm3	16.6	83.4	73.5	9.9	3.1	13.5	10	5.00E+04	5.00E+05	linac vacuum mechanical devices
warm4	12	88	85.1	2.9	5.15	6.87				warm3 but with conventional e+ target
										warm3 but 0.5x all MTBFs, 2x all
warm5	52.1	47.9	24.6	23	2.64	49.4				tunetimefraction, 2x all MD times
warm6	30.8	69.2	66.8	2.4	13.6	17.2				warm 5 but with conventional e+ target

Cold initial Results (beta)

%	access	#	energy		
time	per	tun- over- MTBF		MTBF	
down	month	nels	head	fudge	special conditions
25.3	2.9	2	2%	1	DR magnet MT DR vacuum valu
45.4	14.1	1	2%	1	
39.6	12.1	1	4%	1	
36.9	10.1	1	2%	10	MTBFs of mag backbone, and e factor of 10.
26.8	6.4	1	4%	10	
27.0	6.1	1	4%	10	A different randoresults are. The t The components
13.6	3.4	2	2%	1	reduces the tunin of how important
24.7	2.9	2	2%	1	DR is separate to
19.8	3.3	2	2%	1	Conventional e+ produced with no to the reliability
15.6	2.3	2	4%	10	illustrates the pe tuned) the positr system is down

#

DR magnet MTBF = 10*<u>SLACs</u> = 4.9e6 hours DR vacuum valve MTBF = 6e5 instead of nominal 1e5

MTBFs of magnet power supplies, timing, controls backbone, and electrical distribution increased by a factor of 10.

A different random number seed to see how precise the results are. The total downtime changes very little. The components vary by around 0.25%.

reduces the tuning time by a factor of 10 to give and idea of how important that tuning time is.

DR is separate tunnel. A surprisingly small effect

Conventional e+ source: Just assumed e+ could be produced with no beam in e- linac. No changes were made to the reliability of parts in the e+ source itself. This illustrates the penalty of not being able to tune up (or keep tuned) the positrons when something in the electron system is down

Cold MTBF budgets

run numb		% time fully up integrati ng lum or sched		sch edul ed	% time actual opport unistic	% time usele ss	nt	MTBF	MTBF	
er	MD	MD	lum	MD	MD			before	now	devices
cold1	30.9	69.1	58.6	11	1.49	29.4				initial run with nominal MTBFs
							10	1.00E+06	1.00E+07	all water cooled magnets
							3	5.00E+04	1.50E+05	vacuum valve controllers
							5	2.00E+05	1.00E+06	large Power Supplies
							10	1.00E+05	1.00E+06	electronics modules esp PS controllers
							3	1.00E+05	3.00E+05	DR coupler interlocks
							5	1.00E+05	5.00E+05	DR VACP
							5	3.00E+05	1.50E+06	vacuum insulating vacuum leaks
										energy overhead increase from 2 to 3%
cold2	18	82	71.1	11	1.09	16.9	3	3.60E+05	1.08E+06	small electrical < 0.5 MW
							4	5.00E+04	2.00E+05	linac vacuum mechanical device
										energy overhead increased to 4% (total improvement)
										all water cooled magnets (total
							30	1.00E+06	3.00E+07	improvement)
										first klystrons and related hardware
							10	2.50E+04	2.50E+05	(should be done with redundancy)
cold3	16.6	83.4	72.5	11	1.11	15.5				cryo JT valve
cold4	35.2	64.8	54.2	11	1.41	33.8				cold 3 but with 1 tunnel
cold5										cold4 but with improved MTBFs. Got tired, so not done yet.

Comments

- * Many parts means each must be quite reliable.
- * Of initial 30% unavail, 10% is for lumped systems, 20% for linac+DR. Hence need factor of 4 overall improvement for them.
- Wiggler e+ source really hurts availability for 3 reasons
 - MD can't be done in parallel
 - Less MD can be done during recovery
 - Sequential recovery is slower
- * Cold and warm are remarkably similar
- * Some serious engineering will be needed to attain the required MTBFs.

Comments (2) (M. Ross)

* Availability has received attention before:
•SNS

JLab consultant

ANL/APS study

* This group will *not* have time to benchmark with a real machine

(hard!)

** an important contribution of the USLCSG task force

Marc Ross - for Tom Himel (SLAC) - TESLA Collaboration meeting, 16.09.03

Marc Ross – for Tom Himel (SLAC) – TESLA Collaboration meeting, 16.09.03

Plans

Cleanup input deck more Rerun simulations – very similar results expected Write it up

≪ Celebrate

Plans

- * Add machine development time. Adjust for that which was done opportunistically
- * Double check the components and degradations
- Work harder on tuning the MTBFs to be reasonable and not too costly. This is HARD. Anyone with ideas on how to do this, please let me know.
- ₩ Do warm LC
- Document the exceptional MTBFs in some way so the cost group can easily find them.
- Continue to concentrate on DRs and Linacs, leaving other regions undetailed as they are very similar for all designs.

State of input data

***** MTBFs are the big problem

- In many cases, don't have data from present accelerators to get a good starting value
- Often just used 100,000 hours for no good reason.
- Ideally we would know MTBF vs. cost for each component and minimize total cost subject to the constraint on overall availability – We knew upfront this wasn't possible.
- For a few which are real availability drivers we will look in detail. Others will just be guesses.
- Even calculating the MTBF of a power supply with redundant regulators is difficult as common mode failures (e.g. water leak) must be considered.
- ₩ Remember: GIGO

Need interaction with other task forces

- In 2 tunnel design, we assume all electronics are in the support tunnel. For 1 tunnel we follow the TDR. Correct?
- In 1 tunnel design, assumed AC power distribution, timing and controls backbone all in the accelerator tunnel. Correct?
- Tuning model assumes there is a tune-up dump at the end of each region. Correct?
- How would you like data summarized? By region? By system? What is a system?

Need interaction with other task forces

- ★ Can we get advice with cost vs. MTBF?
- * Assumed klystrons can be replaced with accel running. Are there waveguide valves that allow this for cold 2 tunnel? For warm?
- * Need a good way to pass to costing group what we have made redundant, or given long MTBFs so costs can be adjusted.
- Could double MTBFs for all energy producing components instead of doubling energy overhead. Any gut feelings as to cost trade-off.

Summary

- Considerable progress has been made on the availability simulation
 - Still need to do a bit more cross-checking, but it is looking pretty solid
- * The input data that describes the accelerator components is nearing completion
 - Parts counts are reasonable, but some are known to be missing and others may have been missed (need to cross check with WBS)
- * The MTBFs still need considerable refining. Many are just wild (uneducated) guesses.
- * All results are very preliminary (remember GIGO)