Dealing with rf breakdowns in the CLIC
main linacs
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Introduction

Caveat Emptor — We have barely started dedicated study of the operational aspects of the
main linac rf system. We need much more experience running structures at CLIC parameters
and many more measurements before we can be confident in how our system will behave.

Still I'll present the main issues of operating the main linac rf system and our current ideas
about operation.

Underlying assumptions and issues:

* An rf breakdown kicks the beam(s) resulting in luminosity loss but not damage to the
accelerator (see Daniel’s and Frank’s talks).

* You can’t do anything about breakdowns on the pulse itself

* We don’t allow more that 1% luminosity loss due to breakdown (but we assume we lose
the whole pulse even if breakdowns occur at roughly random times inside the pulse). So
for 3 TeV with 3x10* m of active length we get our BDR specification of 3x107/pulse/m.

* Breakdowns are statistically regular events and are part of normal operation.

* Most of the breakdowns will come from the high-gradient accelerating structures.
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If most breakdowns are single events then machine operation becomes just carrying on, most of
the time you do nothing to prepare for the pulse after breakdown.

But breakdowns sometimes, with some probability, come in sequences. In these cases we may
need to back off the power and ramp back up with some kind of algorithm.

We have developed the PETS on/off in reserve in case the power needs to be ramped or a
structure needs to be switched off.

If we start ramping, or shutting off power we need to consider global compensation of lost
energy. We also need to compensate ‘lost’ transverse kicks due to structure misalignments
which have been compensated for by the beam-based alignment.

We currently have about 5% gradient overhead to compensate with lost acceleration in the
form of de-phased drive beam sectors. We have beam-based alignment feedbacks to deal with
the missing kicks.

It is natural to turn structures back on gradually so that energy and transverse kick
compensation can adapt to changing conditions.
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But let’s now look at how structures are actually behaving
before going into more detail.
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Gradient summary
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First measurements of breakdown sequence statistics

Both sets of measurements were made on TD18s
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Probability

BD events = 160 for 27054 pulses

NO Breakdown Probability vs. number of RF pulses
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Kick Measurement

direction of the kicks
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Breakdown statistics at low breakdown rate

Recent data from KEK. TD24 (CLIC nominal geometry) 484 hr run with CLIC nominal pulse
(unloaded), three breakdowns gives BDR=1.6x10""/pulse/m.

7 March 9:43
2 22 7 March 9:54
3 24 14 March 0:38

Good news — we haven’t seen a single sequence of breakdowns with the CLIC pulse
at the nominal breakdown rate, but | suspect they ramped power after breakdown.
Plus you’ve gotta be a real optimist to draw a conclusion from just three points.
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How we can ramp the power — in the accelerating
structure and even in the PETS
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@T%: Wakefield Coupling PETS <-> TD24
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Two-beam RF components

Waveguide network

* high power CHOKE-MODE FLANGE
* precise phase lengtl

PETS

high-power

«as short as possible
low longitudinal
and transverse
impedance

3 dB E-plane Choke mode flange

HYBRID i
&=« independent alignment of main and

drive beam

ABSORBER TAPER

Accelerating
On/ramp/off structure

*high-gradient

«as long as possible
*micron precision
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*necessary (?) to react
to breakdown and/or
failure
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@) PETS ON/OFF operation (CLIC PETS)
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Modification of the TBTS PETS tank layout in 201@. KEK

External recirculation loop

Internal recirculation

Variable short circuit

Variable Power splitter and Phase shifter, GYCOM
1. YR, HGW 2012, KEK, Japan



Waveform for the different reflection and fixed (180°) phase advance
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Procedure:

» Medium (10 A) current, long (240 ns) pulse
»The short circuit was set on the expected 180°
phase advance position.

»The variable reflector position was change
from full transmission to the full reflection.



A special two-beam issue

In a two-beam accelerator reflected power from a breakdown can go back to the
PETS.

So both the main and drive beam can be affected by a breakdown in an accelerating
structure!

In particular, power reflected from an rf breakdown goes back to the PETS, reflects off
the upstream end and, if it has the right phase, adds to deceleration of the drive beam

generating higher power. This also means the drive beam is decelerated more.

We’ve seen this effect in the two-beam test stand.
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Evidence of ACS BDs effect on input power
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 The reflected power is likely to change randomly the phase of the PETS
recirculation loop and consequently to modify the produced power

Some Results and Analysis from CTF3 W.
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A special two-beam issue

One solution for this problem is to install an on/off mechanism also on the upstream
end of the PETS, terminating it when under full power mode.

Issue under active study.
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Current breakdown response scenario
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