

Hittite Microwave Corporation

Your Number One Provider of Analog Mixed Signal Solutions

April 2012

Hittite - Growing Global Presence

HMC Corporate Headquarters Boston (1985)

HMC Europe., LTD. London, (2001)

HMC International HQ Cork, Ireland

HMC Deutschland GmbH Munich, (2001) HMC Asia Co., LTD. Seoul, (2002)

HMC Co., LTD. Shanghai, (2003)

HMC Co., LTD. Shenzhen, (2004) HMC East Philadelphia (2005)

HMC Design Center Turkey Istanbul (2005)

HMC Design Center Colorado Springs (2005)

HMC India Hyderabad (2009) Bangalore (2005)

HMC Nordic AB Stockholm (2006)

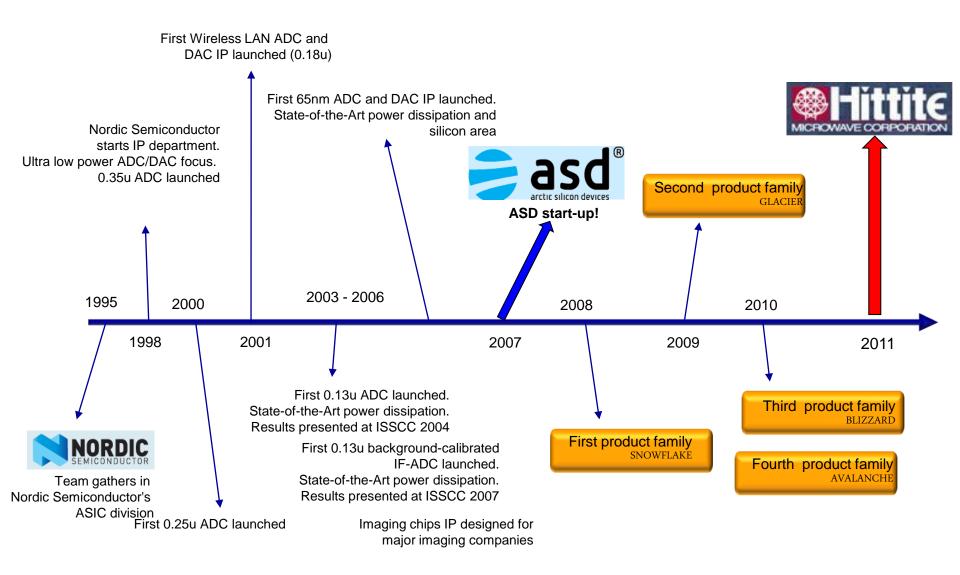
HMC Canada, Inc. Ottawa (2006)

HMC ADC Trondheim (2011) HMC Central Dallas (2006)

HMC West San Diego (2007)

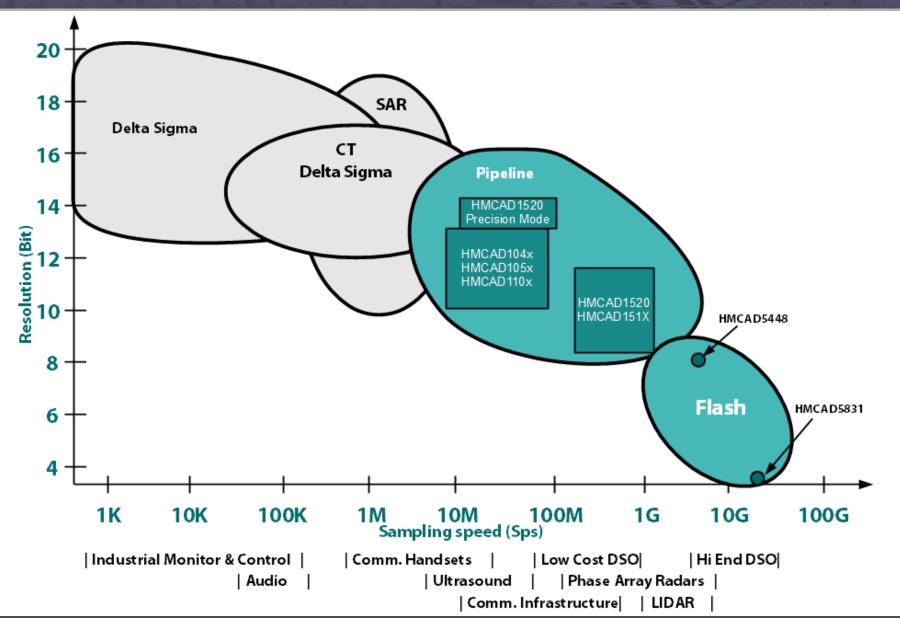
HMC Japan Tokyo (2008)

Hittite Microwave Corporation

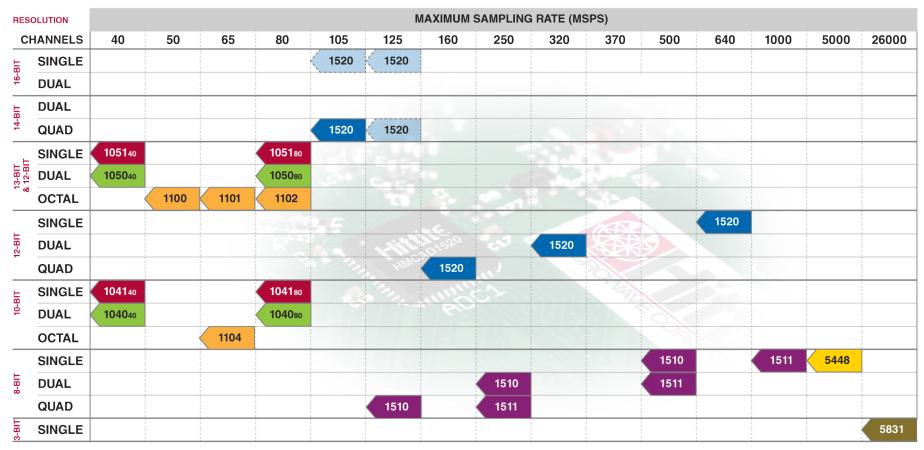

High sampling speed, high resolution and low power dissipation A/D Converter Solutions

Hittite Microwave Confidential

March 2012



Arctic Design Center – Brief History



ADC Architectures - Speed and resolution

High Speed, Low Power ADCs - Introduction

COLOR LEGEND

 Red
 1041 & 1051 - Parallel (CMOS) Output LP6

 Green
 1040 & 1050 - Parallel Output LP9

 Orange
 1100, 1101, 1102 & 1104 - Serial (LVDS) Output LP9

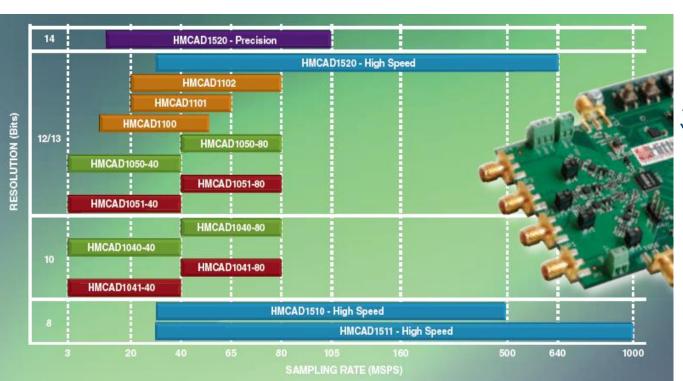
 Purple
 1510 & 1511 - Serial (LVDS) Output LP7

 Lt. Blue
 1520 - See Hittite for Details

 Blue
 1520 @ Serial (LVDS) Output LP7

 Yellow
 5448 - Serial (LVDS Demux) 256 BGA

 Gold
 5831 - Serial (CML) LP9


 Teal
 106X & 107X

High Speed, Low Power ADCs - Introduction

High Speed, Low Power Analog-to-Digital Converters (ADC)

- ✓ Sample Rates: 3 to 1000 MSPS
- ✓ Resolution: 8 to 16 bits✓ CMOS & LVDS output
- ✓ Configurable Power Consumption & Functionality with SPI settings
- ✓ Integrated Instrumentation Functionality

Cellular & Microwave Infrastructure

- ✓ Diversity Receivers
- ✓ Direct Conversion Receivers
- ✓ Digital Pre Distortion (DPD) Loops
 - ✓ Remote Radio Heads (RRH)

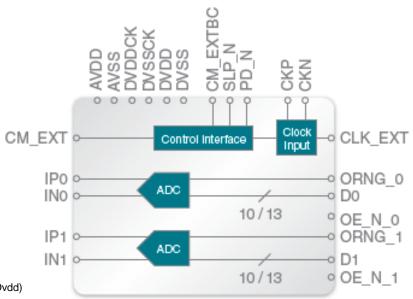
Test & Instrumentation

- ✓ Digital Oscilloscopes
- ✓ Spectrum Analyzers
- High Definition Video Digitizing
- ✓ Non Destructive Testing (NDT)

Industrial & Medical

✓ Ultrasound

Magnetic Resonance Imaging (MRI)

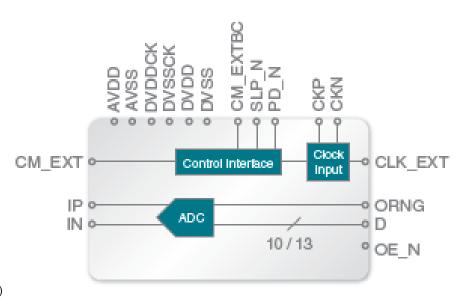

Environment & Patient Monitoring

A/D Converter Solutions 10 & 13-Bit Dual ADCs, up to 80 MSPS

Part Number	Function / Mode	Resolution (bits)	Sample Rate (MSPS)	Power Dissipation[2][3]	SNR (dBFS)	SFDR (dBc)	Package
HMCAD1050-80	Dual Channel	13 / 12	80	102 mW	72	77	LP9E
	Dual Channel	13 / 12	65	85 mW	72.6	81	
HMCAD1050-40	Dual Channel	13 / 12	40	55 mW	72.7	81	LP9E
	Dual Channel	13 / 12	20	30 mW	72.2	85	
HMCAD1040-80	Dual Channel	10	80	78 mW	61.6	75	LP9E
	Dual Channel	10	65	65 mW	61.6	77	
HMCAD1040-40	Dual Channel	10	40	43 mW	61.6	81	LP9E
	Dual Channel	10	20	24 mW	61.6	81	

- ✓ Selectable 20/40/65/80 MSPS
- ✓ Ultra Low Power Dissipation
 - ✓ Dynamic power vs sample rate scaling
- ✓ 72 dB SNR at 80 MSPS & 8MHz Fin
- ✓ Internal Reference Circuitry
- ✓ Parallel CMOS Output
- √ 64 Pin QFN Package
- ✓ Pin Compatible

^[2] Supply Voltage (Vdd) +1.8 Vdc Analog Supply (Avdd) and +1.8Vdc Digital Supply (Dvdd)

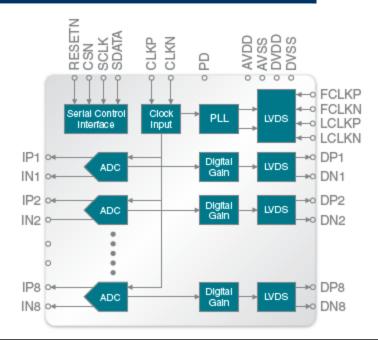

^[3] Output Supply Voltage (OVdd) +1.7 to +3.6 Vdc

A/D Converter Solutions 10 & 13-Bit Single ADCs, up to 80 MSPS

Part Number	Function / Mode	Resolution (bits)	Sample Rate (MSPS)	Power Dissipation[2][3]	SNR (dBFS)	SFDR (dBc)	Package
HMCAD1051-80	Single Channel	13 / 12	80	60 mW	72	77	LP6HE
	Single Channel	13 / 12	65	50 mW	72.6	81	
HMCAD1051-40	Single Channel	13 / 12	40	53 mW	72.7	81	LP6HE
	Single Channel	13 / 12	20	19 mW	72.2	85	
HMCAD1041-80	Single Channel	10	80	46 mW	61.6	75	LP6HE
	Single Channel	10	65	38 mW	61.6	77	
HMCAD1041-40	Single Channel	10	40	25mW	61.6	81	LP6HE
	Single Channel	10	20	15 mW	61.6	81	

- ✓ Selectable 20/40/65/80 MSPS
- ✓ Ultra Low Power Dissipation
 - ✓ Dynamic power vs sample rate scaling
- √ 72 dB SNR at 80 MSPS & 8MHz Fin
- ✓ Internal Reference Circuitry
- ✓ Parallel CMOS Output
- √ 40 Pin QFN Package
- ✓ Pin Compatible

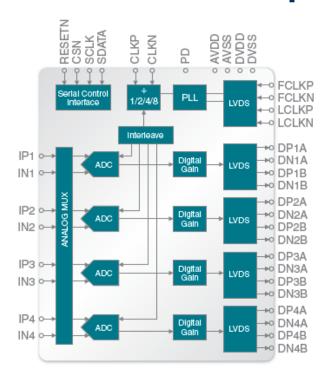
^[2] Supply Voltage (Vdd) +1.8 Vdc Analog Supply (Avdd) and +1.8Vdc Digital Supply (Dvdd)


^[3] Output Supply Voltage (OVdd) +1.7 to +3.6 Vdc

A/D Converter Solutions 12 & 13-Bit Octal ADCs, up to 80 MSPS

Part Number	Function / Mode	Resolution (bits)	Sample Rate (MSPS)	Power Dissipation[2][3]	SNR (dBFS)	SFDR (dBc)	Package
HMCAD1102	Octal Channel	12	80	59 mW / Channel	70.1	77	LP9E
HMCAD1101	Octal Channel	13 / 12	65	51 mW / Channel	72.2	82	LP9E
HMCAD1100	Octal Channel	13 / 12	50	41 mW / Channel	72.2	82	LP9E
	Octal Channel	13 / 12	40	35 mW / Channel	72.2	82	
	Octal Channel	13 / 12	20	23 mW / Channel	72.2	82	

- ✓ Selectable 20/40/50/65/80 MSPS
- ✓ Ultra Low Power Dissipation
 - ✓ Dynamic power vs sample rate scaling
- √ 72.2 dB SNR @ 65 MSPS & 8MHz Fin
- ✓ Internal Reference Circuitry
- √ 15µs Start Up Time from Power Down
- ✓ Coarse and Fine Gain Control
- ✓ SPI Configuration
- √ 64 Pin QFN Package


^[2] Supply Voltage (Vdd) +1.8 Vdc Analog Supply (Avdd) and +1.8Vdc Digital Supply (Dvdd) ^[3] Output Supply Voltage (OVdd) +1.7 to +3.6 Vdc

HMCAD1520 – Multi-Mode ADC w/ Integrated Cross Point Switch

Part Number	Function / Mode	Resolution (bits)	Sample Rate (MSPS)	Power Dissipation[2][3]	SNR (dBFS)	SFDR (dBc)	Package
HMCAD1520	High Speed Single Channel	12	640	490 mW	70	60 / 75 [1]	LP7DE
	High Speed Dual Channel	12	320	490 mW	70	60 / 78 [1]	
	High Speed Quad Channel	12	160	490 mW	70	60 / 78 [1]	
	Precision Quad Channel	14	105	603 mW	74	83	
	Precision Quad Channel	14	80	530 mW	75	85	

- ✓ Multiple Modes
 - ✓ Single channel 12-bit up to 640 MSPS
 - ✓ Dual channel 12-bit up to 320 MSPS
 - ✓ Quad channel 12-bit up to 160 MSPS
 - ✓ Quad channel 14-bit up to 105 MSPS
- ✓ SPI Configurable Operational Modes
- ✓ SPI Configurable Number of Channels
- ✓ 1µs Switching Time Between Configurations
- ✓ Internal 1X to 8X Clock Divider
- ✓ LVDS output
 - ✓ Full robustness inn RSDS (Low Current) Mode
- ✓ Ultra Low Power Dissipation
 - ✓ Dynamic power vs sample rate scaling
- ✓ Coarse & Fine Gain Control
- √ 48 Pin QFN Package

^[1] Excluding Interleaving Spurs

^[2] Supply Voltage (Vdd) +1.8 Vdc Analog Supply (Avdd) and +1.8 Vdc Digital Supply (Dvdd)

^[3] Output Supply Voltage (OVdd) +1.7 to +3.6 Vdc

8-bit up to 1000 MSPS ADCs w/ Integrated Cross Point Switch

Part Number	Function / Mode	Resolution (bits)	Sample Rate (MSPS)	Power Dissipation[2][3]	SNR (dBFS)	SFDR (dBc)	Package
HMCAD1511	Single Channel	8	1000	710 mW	49.8	49 / 64 [1]	LP7DE
	Dual Channel	8	500	710 mW	49.8	44 / 63 [1]	
	Quad Channel	8	250	710 mW	49.8	57 / 70 [1]	
HMCAD1510	Single Channel	8	500	295 mW	49.8	49 / 65 [1]	LP7DE
	Dual Channel	8	250	295 mW	49.8	59 / 69[1]	
	Quad Channel	8	125	295 mW	49.7	60 / 69 [1]	

- ✓ Multiple Modes
 - ✓ Single channel 8-bit up to 1000 / 500 MSPS
 - ✓ Dual channel 8-bit up to 500 / 250 MSPS
 - ✓ Quad channel 8-bit up to 250 / 125 MSPS
- ✓ SPI Configurable Operational Modes
- ✓ SPI Configurable Number of Channels
- √ 1µs Switching Time Between Configurations
- ✓ Internal 1X to 8X Clock Divider
- ✓ Wide Range Digital Gain
- ✓ LVDS output
 - ✓ Full robustness inn RSDS (Low Current) Mode
- ✓ Ultra Low Power Dissipation
 - ✓ Dynamic power vs sample rate scaling
- ✓ Coarse & Fine Gain Control
- √ 48 Pin QFN Package

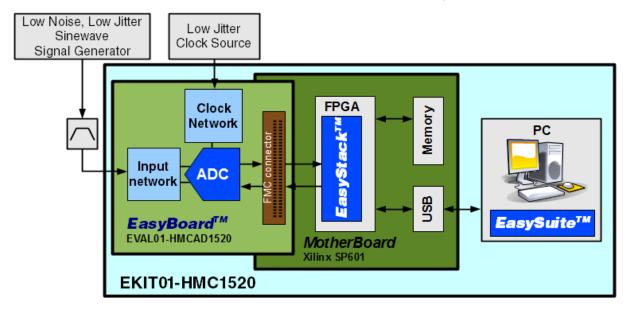
Setial Coutrol Intertace	D C C K N 1/2/4/8	Od o	AVE S O O O O O O O O O O O O O O O O O O O
	Interleave		← LCLKN
IP1 ○→ IN1 ○→		Digital Gain	→ LVDS → DP1A → DN1A → DP1B → DN1B
IP2 ○→ ADC		Digital Gain	→ LVDS → DP2A → DN2A → DP2B → DN2B
IP3 ⊶ IN3 ⊶		Digital Gain	LVDS → DP3A → DN3A → DP3B → DN3B
IP4 0→ IN4 0→		Digital → Gain	LVDS → DP4A → DN4A → DP4B → DN4B

^[1] Excluding Interleaving Spurs

^[2] Supply Voltage (Vdd) +1.8 Vdc Analog Supply (Avdd) and +1.8 Vdc Digital Supply (Dvdd)

^[3] Output Supply Voltage (OVdd) +1.7 to +3.6 Vdc

EasySuiteTMADC Evaluation and Prototyping Platform



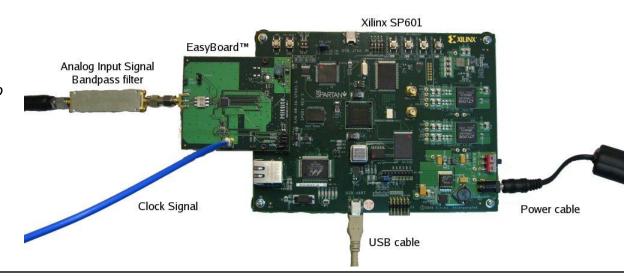
EasySuite™ ADC Evaluation and Prototyping Tool Analog Made Easy™

Analog Made Easy™

- ✓ EasySuite™: Evaluation and Prototyping Platform Environment
 - ✓ The EasySuiteTM PC tool handles ADC configuration and ADC data analysis. With EasySuiteTM, the user can easily configure the ADC through the SPI port, perform measurements and analyze the result.
 - ✓ EasySuite™ includes Time-Interleave post processing, for Time-Interleave artifact analysis
- ✓ EasyBoardTM: Supplied Evaluation Board Connected to Xilinx[©] Standard FMC Board
- ✓ EasyStack™: Firmware Code Stack, Currently Available for Xilinx®
 - ✓ EasyStack handles data transport over LVDS from the ADC to the FPGA, and from the FPGA to the PC.
 - ✓ EasyStack includes an ADC data processing API

EasySuiteTM ADC Evaluation and Prototyping Tool EasyBoardTM and Measurement setup

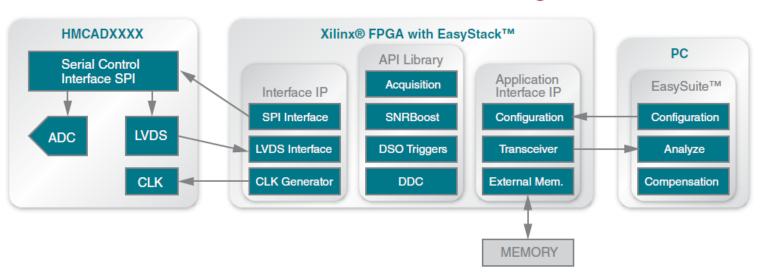
EasyBoard[™]


- Connected to Xilinx standard Evaluation board through FMC Connector
- ✓ FMC: FPGA Mezzanine Card
- The Low-Pin Count FMC connector variant is utilized
- ✓ Xilinx SP601, SP605 and ML605 are supported
 - ✓ SP601 is included in the EKIT delivery
- ✓ EasyBoard is available for all Hittite ADCs

Hardware setup

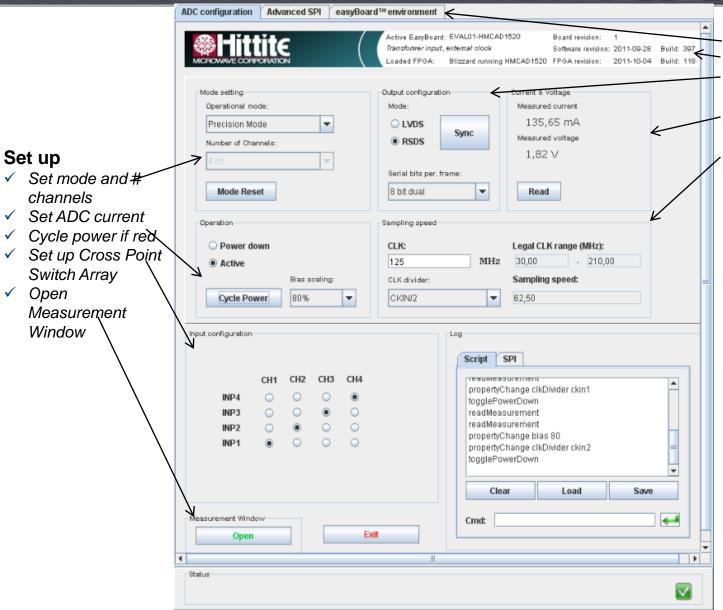
- ✓ Analog input from signal generator
 - ✓ Filter needed to eliminate Signal generator noise
- ✓ EasyBoardTM with Hittite ADC connected to Xilinx FMX board through FMC connector
- ✓ Xilinx SP601 FMC board with uploaded Hittite EasyStack™ FPGA Firmware

FMC Connector: On Reverse side of EasyBoard™



Analog Made Easy™

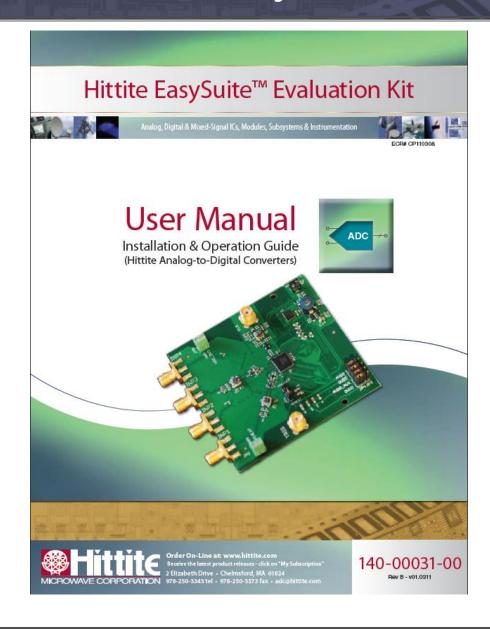
- EasySuite™: Evaluation and Prototyping Software Environment
- EasyBoard™: Supplied Evaluation Board
 Connected to Xilinx© Standard FMC Board
- EasyStack™: Firmware Code Stack, Currently Available for Xilinx®



ADC Evaluation Kit Functional Diagram

Set up

- Supply Voltage
- Board Info
- Set LVDS output configuration
- Check supply voltage and current consumption
- Set clock frequency and clock divider



EasySuite™ Measurement Window (1 of 2)

EasySuiteTM – User Manual

Hittite Microwave Corporation

Ultra high speed A/D Converter Solutions

January 2012

Ultra High Speed A/D Converters - Overview

Part Number	Function/ Mode	Resolution (Bits)	Sample Rate	Demux	RF Bandwidth	Power Dissipation	ENOB	SFDR (dBc)
HMC5448-256BGA	8-bit, 5Gsps, with integrated 1:4 Demux	8	5 Gsps	1:4 to LVDS	9 GHz	8.5 W	5.8	41
HMC5448-256BGA	8-bit, 5Gsps, with integrated 1:8 Demux	8	5 Gsps	1:8 to LVDS	9 GHz	9.2 W	5.8	41
<u>HMC5401LC5</u>	26Gsps 3-bit + OVR	3	26 Gsps	None	20 GHz	3.3 W	2.9	25
HMC5831LP9	26Gsps 3-bit + OVR with integrated 1:2 Demux	3	26 Gsps	1:2 with ADC encoder	20 GHz	4.2 W	2.9	25

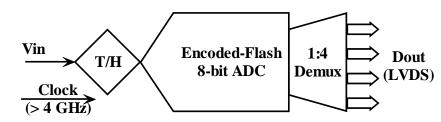
Roadmap

Part Number	Function/ Mode	Resolution (Bits)	Sample Rate	Demux	RF Bandwidth	Power Dissipation	ENOB	SFDR (dBc)
	8-bit, 5Gsps, with integrated 1:4 Demux	8	5 Gsps	1:4 to LVDS	9 GHz	4.2 W	5.8	41
	6-bit, 10Gsps, with integrated 1:8 Demux	6	10 Gsps	1:8 to LVDS	14 GHz	4.5 W	4.2	>32
	52Gsps 3-bit + OVR	3	52 Gsps	1:4 CML	26 GHz	5 W	2.9	25
	40Gsps 2-bit + OVR with integrated 1:2 Demux	2	40 Gsps	1:2 with ADC encoder	20 GHz	4.2 W	1.9	18
	26Gsps 5-bit + OVR	5	26 Gsps	1:2 with ADC encoder	26 GHz	4.5 W	4	29

Advanced Product Summary HMC5448 8-bit @ 5 GS/s ADC

Applications

- ✓ RADAR, LIDAR, EW, ELINT Systems
- ✓ Broadband Spectrometers
- ✓ Radio Astronomy
- ✓ Software-Defined Radio
- ✓ UWB Systems
- ✓ Broadband Test & Measurement Equipment


Key Measured Specifications

Parameter	Typ. Performance	Units
Resolution	8	bits
Signal Input Bandwidth	9	GHz
Sampling rate	5	GS/s
ENOB (4 GS/s*)	5.8 @100MHz 5.5 @ 2.0GHz 5.4 @ 6.0GHz	bits
SFDR to Nyquist (4 GS/s*)	41 @ 100 MHz 38 @ 2.5 GHz 39 @ 6.0 GHz	dBc
Supply Voltages	-5.0 ± 5% (Core) +2.0, variable +1 to 2 -2.0, 0.9 to 1.8 (Outputs)	V
Total Power	8.5 (1:4 demux, HMC5448) 9.7 (1:8 demux, HMC5447)	w

^{*} Sampling rate limited by test system Unless otherwise specified, $T = +25^{\circ}$

Product ECCN Code:3A001.a.5.a

Functional Diagram

- ✓ Extremely broadband data conversion
- ✓ Supports sub-sampling into X-band
- ✓ On-chip T/H improves performance, bandwidth
- ✓ Differential signal and clock inputs (50 Ω)
- ✓ On-chip 1:4 or 1: 8 demux
- ✓ LVDS-compatible data, demux clock, over-range outputs
- √ -40 to 85°C operating temperature range
- ✓ Radiation-tolerant by design and technology
- ✓ Signal and clock inputs are differential
- ✓ Technology is SiGe HBT

Advanced Product Summary HMC5448 8-bit @ 5 GS/s ADC

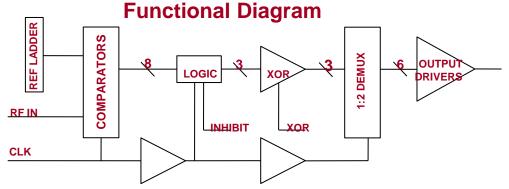
EVALUATION BOARD PART NO. 127097-1

SYNPLICITY HAPS311040 MOTHER BOARD

- TEST BOARD MATES WITH SYNPLICITY HAPS311040 MOTHER BOARD WITH XILINX VIRTEX-4 FPG.
- SYNPLICITY H ETH USB 1X1 P7 PROVIDES USB INTERFACE TO PC.
- DATA IS PROCESSED IN THE PC USING HMC CUSTOM MATLAB AND EXCEL ROUTINES.
- PART IS OPERATED WITH HEATSINK OF 5 SQ IN SURFACE AREA (1.1 IN L x1.1 IN W X 0.5 IN H) AND AIR FLOW OF 10 CFM.
- ADC PACKAGE CONFORMS TO JEDEC 256 BGA (17 mm SQUARE X 4.0mm MAXIMUM HEIGHT)

Bill of Materials 2007056 8bit ADC

				Quantity
Component	Description	MFG Name	MFG Part #	per Board
U1	ADC	HMC	HMC5448	1
U2	T flip-flop	HMC	HMC749LC3C	1
C1-C10	CAP TANT 4.7UF 10V 20% 0603 SMD	AVX	TACL475M010XTA	10
C11-C12,C14,C17-C37	100 nF capacitor	ATC	530L104KT 16 T	24
L4	FERRITE 10A 56 OHM 1612 SMD	Steward	HI1612X560R-10	1
L1, L2, L3, L11, L12	FERRITE 1A 19 OHMS 1206 SMD	Steward	HF1206J150R-10	5
L5,L7-L10, L13-L17	FERRITE CHIP SIGNAL 30 OHM SMD	Steward	LI0402E300R-10	10
R1-R2	RES 1.0K OHM 1/10W 5% 0603 SMD	Vishay/Dale	CRCW06031K00JNEA	2
A1-A2	CONN RCPT HI-SPD .5MM 120POS DL	Samtec	QSH-060-01-L-D-A	2
J1-J9	SMP male, Thru Mount, Full Detent, "T"=0.14	Astrolab	29474-ST2	9
J10-J11	CONN RECPT ULTRA-MINI COAX SMD	Hirose	U.FL-R-SMT(01)	2
J12-J15	CONN HEADER 2POS .100 VERT TIN	Molex	90120-0122	4
J17-J18	CONN HEADER 4POS .100 VERT TIN	Molex	90120-0124	2
J19	CONN HEADER 6POS .100" STR TIN	Molex	90131-0123	1
J20	CONN HEADER 10POS .100" STR TIN	Molex	90131-0125	1
J21	CONN HEADER 2POS 3MM R/A GOLD	Molex	43045-0202	1
J22	CONN HEADER 4POS 3MM R/A GOLD	Molex	43045-0402	1
J23	CONN HEADER 6POS 3MM R/A GOLD	Molex	43045-0602	1
J21 off board mate	CONN RECEPT 2POS 3MM VERT DUAL	Molex	43025-0200	1
J22 off board mate	CONN RECEPT 4POS 3MM VERT DUAL	Molex	43025-0400	1
J23 off board mate	CONN RECEPT 6POS 3MM VERT DUAL	Molex	43025-0600	1
J21-J32 mate female conn.	CONN TERM FEMALE 20-24AWG GOLD	Molex	43030-0009	12



HMC5831LP9 3-Bit @ 20GS/s ADC

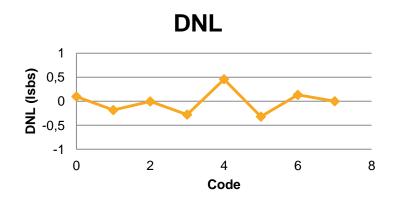

Applications

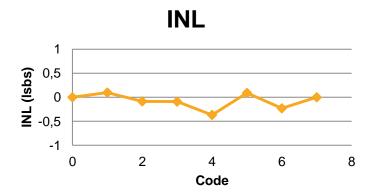
- ✓ Serial data links
- ✓ Test equipment for link diagnostics
- ✓ Clock and data recovery
- ✓ Spectrometers
- ✓ Ultra wideband phased arrays
- ✓ Radio Astronomy

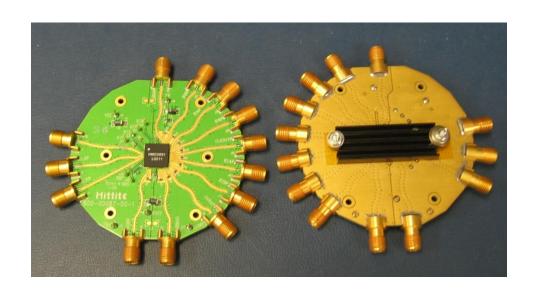
- ✓ Full Flash Architecture
- √ 1:2 Demux on-chip
- ✓ Over/Under Range Bit
- ✓ Output Data Inhibit control
- ✓ XOR input for data paths
- ✓ DC Power < 4.2W
 </p>
- ✓ RF input level 256mVpp single ended
- ✓ CML Outputs
- ✓ Sinewave Clock input level 0 dBm differential at -3dB
- ✓ 9mm x 9mm 64 lead QFN plastic package

Parameter	Typical	Units
Full Power Bandwidth	10	GHz
Sampling Rate	20	Gsps
Resolution	3	Bits
ENOB to Nyquist	2.9	Bits
SFDR to Nyquist	26	dBc
Clock Rate	20	GHz
Data Output Rate	10	Gsps

Typical Test Data from Packaged Die Evaluation - Decimated 2:1


Clock Rate	20GHz	20GHz	20GHz	26GHz
Input Frequency	312.5MHz	9.6875GHz	19.6875GHz	406.25MHz
ENOB*	2.97	2.9	2.8	2.9
SINAD* (dB)	19.6	19.2	18.7	19.4
SFDR (dB)	26.8	25.9	27.5	26.4
DNL (Isbs)	0.45	0.45	0.2	0.41
INL (Isbs)	-0.37	-0.36	-0.2	-0.35


*Using IEEE std 1241



HMC5831LP9 3-Bit @ 20GS/s ADC

Preliminary Test Data

Hittite Microwave Corporation

Ultra Wide Band T/H Amplifiers

January 2012

T/H Amplifiers Product Overview

- Precise Input Signal Sampling and Holding of the Sampled Input Voltage
- Key Application: Front End Sampler for High Speed ADCs

Can be used with both conventional and interleaved ADCs

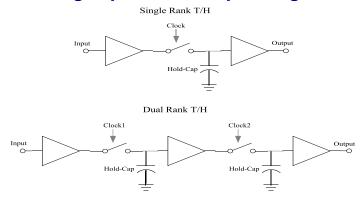
Extends bandwidth & linearity beyond that normally provided by ADC

Provides low jitter sampling, eliminates impact of ADC clock jitter and timing skew in interleaved devices.

Can operate at input frequencies much greater than the sample rate (sub sampling): sampling process can naturally provide frequency down conversion

The difference between T/H and S/H

Sample&Hold - The main function of S/H circuit is to take the samples of its input signal and hold this samples in its output for some period of time

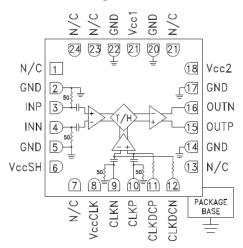

Track& Hold - If in sample mode the output tracks the input then it is called T/H circuit (or functionality)

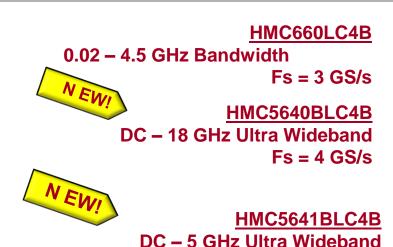
T/H Amplifiers – Basic Types

Single Rank T/H (Single T/H Device)

- ✓ Output: Track-mode for ½ clock cycle, Hold-mode for ½ clock cycle
- ✓ ADC is timed to only sample the T/H hold-interval
- ✓ Optimizes dynamic range (SFDR and noise)
- ✓ Most useful with high speed ADCs operating at 0.5 3 GS/s sample rate

Dual Rank T/H (Integration of two T/Hs in cascade)


- ✓ T/H1 and T/H2 clocked 180 degrees out of phase
- √ T/H2 samples the output of T/H1 hold interval
- ✓ Can be viewed as the analog equivalent of a master-slave D-flip flop
- ✓ Output: T/H1 holds for ½ clock cycle (while T/H2 tracks), T/H2 holds for ½ clock cycle (while T/H1 tracks)
- ✓ Output is constant at held sample value over the entire clock period
- ✓ Somewhat less dynamic range but useful for lower performance ADCs (long acquisition times) or high speed ADCS at very high clock rates where ADC acquisition time limits the achievable clock rate.



T/H Amplifiers Product Overview

Fs = 4 GS/s

Functional Diagram

Electrical Specifications $T_A = +25C$, See Test Conditions on following page herein.

Parameter	Conditions	Test Level	Min.	Тур.	Max.	Units	
Analog Inputs (INP, INN)							
Differential Full Scale Range				1		Vpp	
AC Coupling Low Frequency Corner				16		MHz	
Input Resistance	Each lead to ground			50		Ω	
Return Loss	0 to 5 GHz			12		dB	
DC Clock Inputs (CLKDCP, CLKDCN)							
Common Mode Voltage			2	2.5	3	V	
Differential Clock High Voltage (Track Mode)			20	40	2000	mV	
Differential Clock Low Voltage (T/H Mode)			-20	-40	-2000	mV	
Differential Input Current				10		μΑ	
Common Mode Input Current	CLKDCP, CLKDCN @ 2.5V			6		μА	
AC Clock Inputs (CLKP, CLKN)							
Amplitude (Sinusoidal Input)	Per input terminal		-10	0	10	dBm	

T/H Amplifiers Product Overview

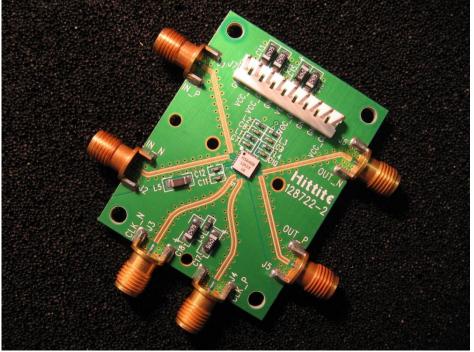
Part number	Description	Max BW (GHz)	Max sampling rate	Evaluation Boards
HMC660	Single Rank, AC-Coupled I/O	4.5 GHz	3 GSPS	available
HMC5641B (HMC760)	Single Rank DC-Coupled I/O	5 GHz	4 GSPS	available
HMC5640B (HMC661)	Single Rank DC-Coupled I/O	18 GHz	4 GSPS	available
*HMC6054	Dual Rank DC-Coupled I/O	5 GHz	tbd	
HMC6053	Dual Rank DC-Coupled I/O	18 GHz	4 GSPS	available

^{*} This device is presently in the engineering test

HMC5640BLC4B 1

18 GHz T/H amplifier

Features


- √ 18 GHz Input Sampling Bandwidth @ Full Scale Input
- ✓ Up to 4 GS/s Sampling Rate
- ✓ DC Coupled, Differential Signal I/O and Clock
- ✓ Excellent High Frequency Linearity
- ✓ Clean Output Waveform, Minimal Glitching
- ✓ Single Rank Device for Low Noise in A/D applications
- ✓ 4x4mm SMT Ceramic RoHS Compliant Package

✓	Digital Samp	ling Oscillos	copes
✓	Digital Recei	ver Systems	-
✓	High Speed F	Peak Detecto	rs
✓	Software Def	ined Radio	
✓	Military Rada	r and ECM	
•	wiiitary Naua	ii and Ecivi	
Video (r	**************************************		57776

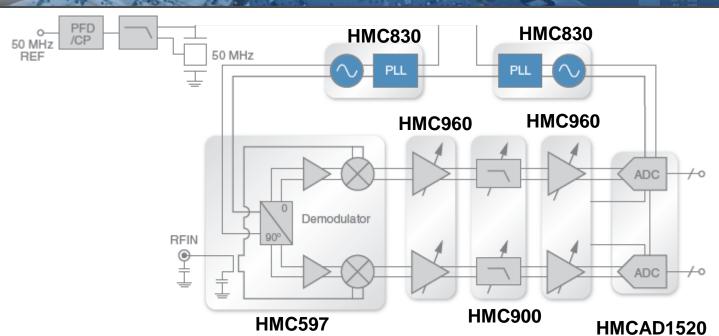
Applications

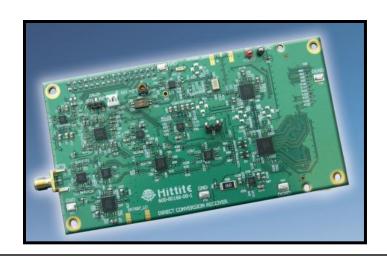
✓ RF ATE Applications

Parameter	Тур.	Units
Input Sampling BW (T/H Mode)	18	GHz
Gain	1	V/V
Maximum Sampling Rate	4	GS/s
Full Scale Differential Input Level	1	Vpp
Single Tone SFDR (Fin = 1 GHz) ¹	56/67	dB
Single Tone SFDR (Fin = 2 GHz) ¹	56/65	dB
Single Tone SFDR (Fin = 4 GHz) ¹	57/68	dB
Single Tone SFDR (Fin = 8 GHz) ¹	43/55	dB
Sampling Aperture Jitter	< 70	fs
Hold-mode Sample Output Noise ²	1.05	mV rms
DC Power Dissipation	1.59	w

Notes:

- 1) Clock rate = 1 GHz, input signal @ full scale/half-full scale level
- 2) Measured with no output filtering (On-chip output amplifier bandwidth ~ 7 GHz), lower noise achievable with filtering


Complete Analog Mixed Signal Solutions

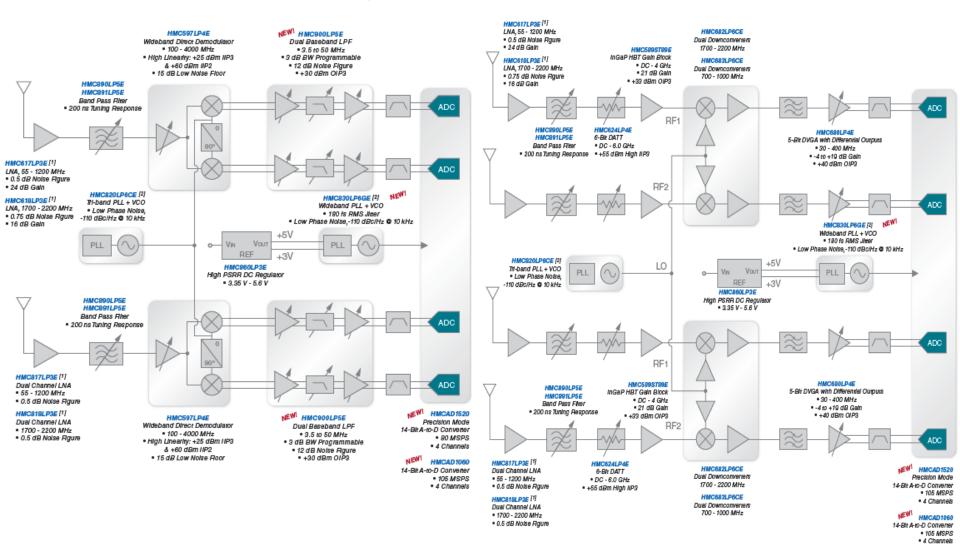

From RF to Bits

HMC6383 Programmable Direct Conversion Receiver

Direct Conversion Receiver Eval. Platform

- Wideband, high linearity,
- Multi-carrier Multi-standard
- Adaptive IF for Microwave Radios
- Software defined Radios
- -1 to 3GHz operation
- high performance HMC830 LO and ADC clocks
- high performance 160Msps ADCs
- Programmable baseband Filtering
- 40dB Differential VGAs

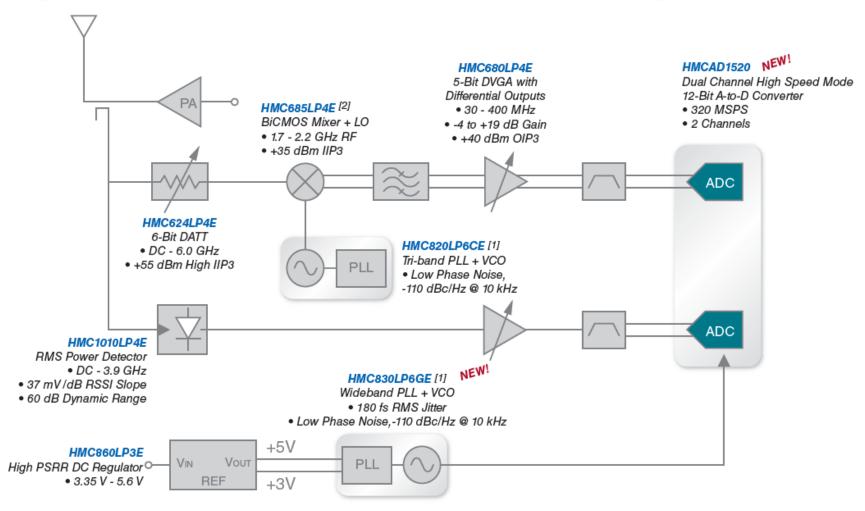
Hittite Confidential April, 2011



A/D Converter Solutions

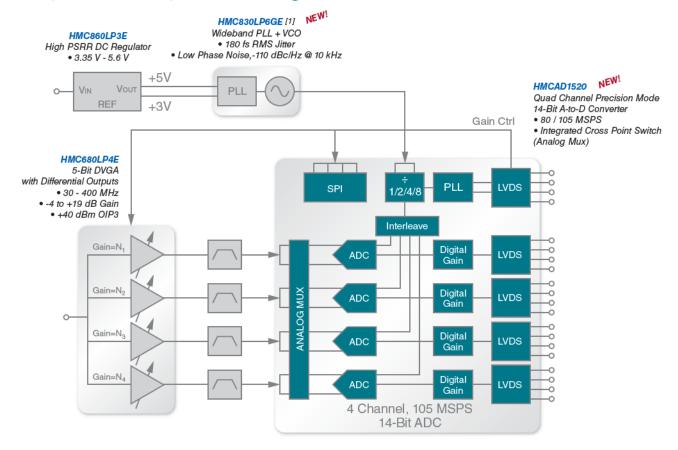
Application examples: Diversity receivers

Direct Conversion Receiver with Diversity


Heterodyne Receiver with MIMO

Application example: Digital Pre-Distortion Featuring HMCAD1520

Digital Pre-Distortion (DPD) Receiver Subsystem Featuring the HMCAD1520


Application example: Spectrum Analyzers Featuring HMCAD1520

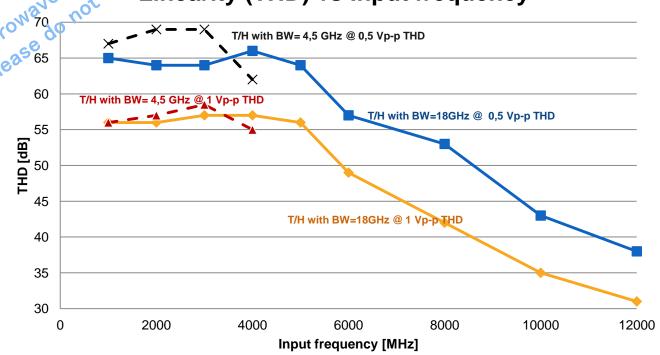
A/D Converter Solutions

HMCAD1520 in Spectrum Analyzer

- ✓ Integrated Cross Point switch (analog mux) gives unique functionality for Spectrum Analyzers
 - ✓ The analog mux can switch ADCs to input of interest.
 - ✓ Gives up to 6dB SNR increase (By assigning all 4 ADCs to one input)
 - ✓ Analog mux switch delay: 1µs

Spectrum Analyzers Featuring the HMCAD1520 In Precision Mode

Hittite Microwave Corporation Multi GHz Quanti-**Proposed solution**



Ultra Wide Band or Narrow Band based Quantizer: Unique linearity for Microwave frequencies!

- ✓ T/H with BW = 4.5 GHz offers
 - ✓ AC coupling required: Fin minimum: 20Mbb or re-distribute
 - √ 69dB linearity for 2-3GHz input frequencies
- T/H with BW = 18 GHz offers
 - ✓ DC coupling
- >55dB linearity up to 6GPz

Linearity (THD) vs Input frequency

Multi GHz Quantizer

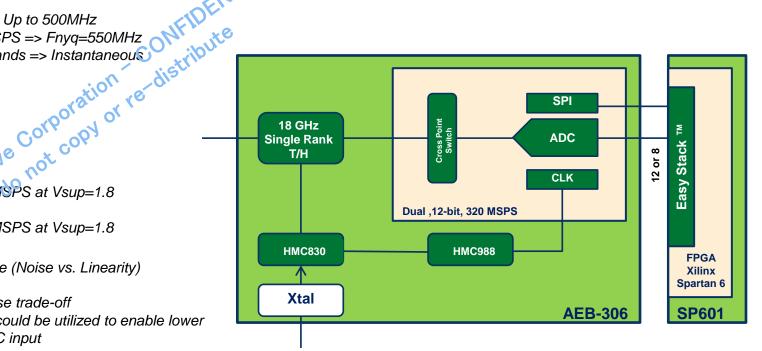
AEB306 - Single ADC solution and Single Rank T/H

Features

- Input frequency range:
- ✓ Instantaneous bandwidth Up to 500MHz
- → ADC FS=1100MSPS => Fnyq=550MHz
 → 10% Transition bands => Instantaneous
 → BW=500MHz

 9st sample rate
 100MSPS wave Corporation
- ✓ Lowest sample rate

ADC

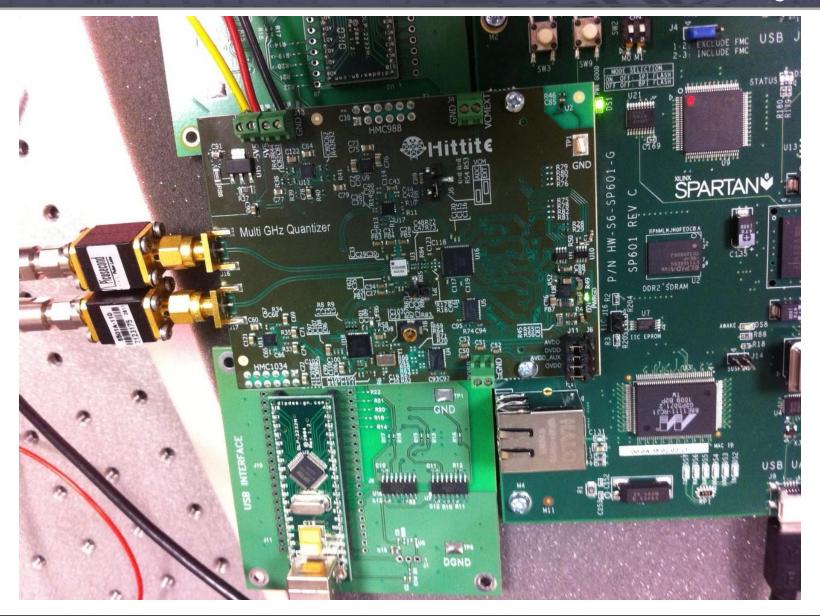

- ✓ ADC #1
 - ✓ 12-bit Up to 640MSPS at Vsup=1.8
- ✓ ADC #2
 - ✓ 8-5it Up to 1000MSPS at Vsup=1.8

Trade-offs

- T/H input signal amplitude (Noise vs. Linearity)
- ✓ ADC input amplitude
 - ✓ Settling BW / Noise trade-off
 - ✓ ADC digital gain could be utilized to enable lower magnitude at ADC input

Clock control

- ✓ PLL + VCO
 - ✓ HMC1034 (125 MHz 3GHz)
 - ✓ HMC830 (25 MHz 3 GHz)
- Programmable clock delay (divider) line
 - ✓ HMC988
- T/H input signal amplitude
 - ✓ Noise vs linearity



Available in Q2 / 2012

Multi GHz Quantizer

AEB-306 reference design board

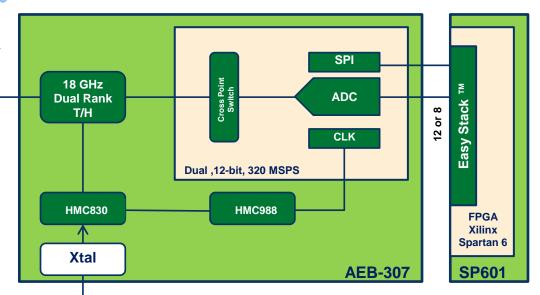
Features: identical to AEB-306

Benefits compared to AEB-306

- Improved settling accuracy

 ✓ Reduced Settling bandwidth for given settling accuracy

 ✓ Reduced clock delay accuracy requirement

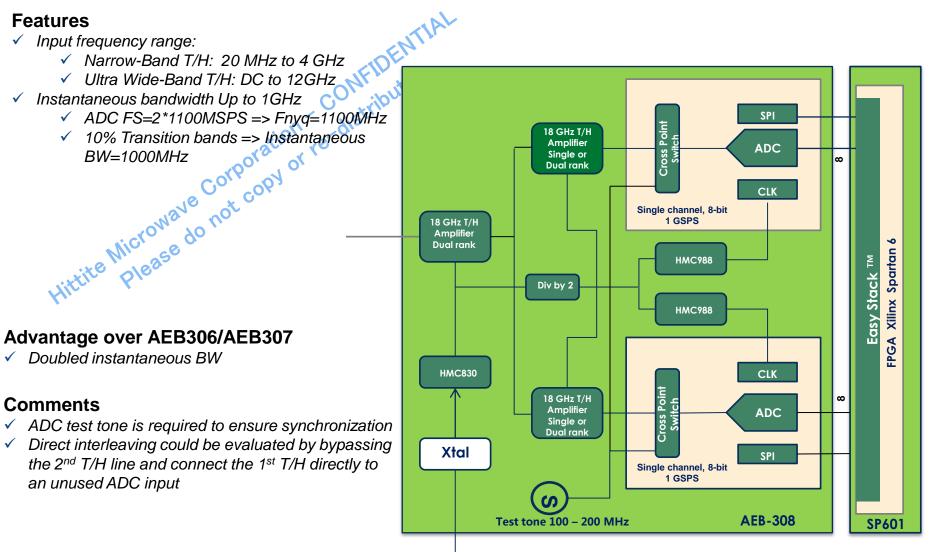

 dvantage compara

Disadvantage compared to AEB-306

Increased power consumption

✓ Increased noise level

Available in Q2 / 2012


-Fn,
-> Instant,
-

Advantage over AEB306/AEB307

Doubled instantaneous BW

Comments

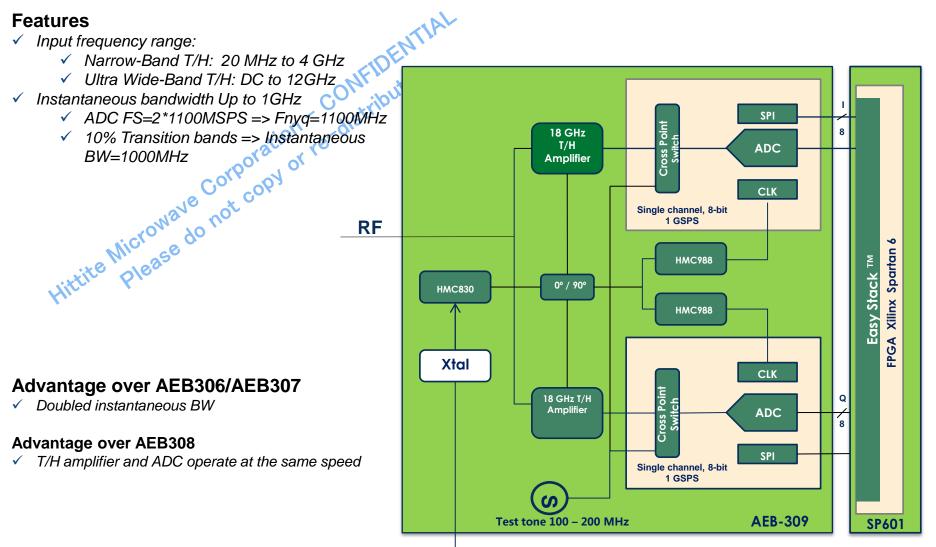
- ✓ ADC test tone is required to ensure synchronization
- ✓ Direct interleaving could be evaluated by bypassing the 2nd T/H line and connect the 1st T/H directly to an unused ADC input

Available in Q3 / 2012

- Fny . => Instant.

- Fny . => Instant.

Corporation or your copy or


RF

Advantage over AEB306/AEB307

✓ Doubled instantaneous BW

Advantage over AEB308

✓ T/H amplifier and ADC operate at the same speed

Available in Q3 / 2012

Hittite Microwave Corporation

Your Number One Mixed Analog Signal Solutions Provider

THANK YOU FOR YOUR ATTENTION!

