CMS aTGC Analysis

Vuko Brigljevic & Matt Herndon Rudjer Boskovic Institute University of Wisconsin – Madison For the CMS SMP VV group

Vγ

- Includes Wγ and Zγ,
 - $-Z \rightarrow vv$ may be included
- Analysis selection
 - $Et(y) > 15 GeV, |\eta| < 2.5$
 - $-\Delta R(\gamma, I) > 0.7$
 - W: $pT(e,\mu) > 35 \text{ GeV}$, $|\eta(e,\mu)| < 2.5$, 2.4, mT(W) > 70 GeV
 - Z: pT(e, μ) > 20 GeV, $|\eta(e, \mu)|$ < 2.5, 2.4, m(Z) > 50 GeV
- Define inclusive cross section with only photon Et and ΔR cuts and in $Z\gamma$ case M(Z) cut
 - Considering whether to define fiducial cross section
 - $Et(\gamma) > 15 GeV, |\eta| < 2.5$
 - $-\Delta R(\gamma,l) > 0.7$
 - W: pT(e,vv) > 35 GeV, $|\eta(e, \mu)| < 2.5$
 - Z: pT(e, μ) > 20 GeV, $|\eta(e, \mu)|$ < 2.5, m(Z) > 50 GeV
 - Unifies lepton definitions

WW

- Currently includes only fully leptonic decays
 - May develop WW,WZ semileptonic analysis
- Analysis selection
 - $-pT(e, \mu) > 20 \text{ GeV}, |\eta(e, \mu)| < 2.5, 2.4$
 - Jet veto: Et > 30GeV
- No cuts for inclusive cross section
 - Considering whether to define fiducial cross section with unified pT and η cuts.

WZ

- Currently includes only fully leptonic decays
 - May develop WW,WZ semileptonic analysis
- Analysis selection
 - W: pT(e,μ) > 20 GeV, $|\eta(e, \mu)|$ < 2.5, 2.4
 - Z: pT(e) > 20/10, pT(μ) 15/15 GeV, |η(e, μ)| < 2.5, 2.4
 - m(Z): 60-120 GeV
- Inclusive cross section with only m(Z) selection
 - Considering whether to define fiducial cross section with unified pT > 10GeV and η cuts.

ZZ

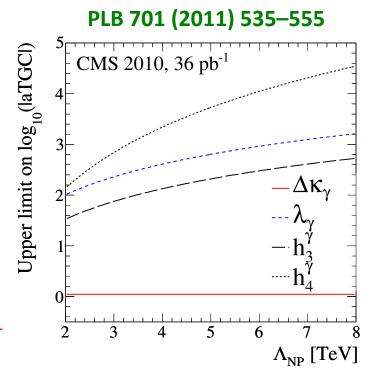
- Currently includes only charge leptonic decays
 - Developing Z→ vv anlaysis
 - May develop semileptonic analysis
- Analysis selection
 - Z1: pT(e, μ) > 20/10 GeV, $|\eta(e, \mu)|$ < 2.5, 2.4
 - Z2 pT(e) 7/7, pT(μ) 5/5 GeV, $|\eta(e, \mu)|$ < 2.5, 2.4
 - m(Z): 60-120 GeV
- Inclusive cross section with only m(Z) selection
 - Considering whether to define fiducial cross section with unified pT > 20/10, 5/5 and η cuts.

VV Cross Sections

- Some issues to consider
- Unify selection
 - When requirements on inclusive cross section are necessary
 - Et(γ), ΔR(γ,I), M(Z)
 - Unify fiducial cross section. Min lepton pT and max η
- Define cross sections using the same programs and techniques:
 - We are quoting different SM predictions for WW and Wγ, it would be good to resolve it!
- All this would also help with comparing and combining aTGC measurements

CMS produing produing

Note on aTGCs


- Traditionally, form factors were used to save unitarity
- CMS decided not to use form factors in the presentation of aTGC results:
 - Why do we want to save unitarity of what is anyway an effective theory?
 - We are not doing this in any other searches, where we also write a lagrangian that would violate unitarity, e.g. search for contact interactions in dijets
 - Even if we use form factors, comparison with Tevatron results is not quite valid, as we are looking at different energy scales
- This approach was welcomed at the LHC EWWG Meeting in December
- For a more in depth justification, see e.g. Juan Alcaraz' talk in the LHC EWWG meeting on TGCs on 13.10.2011

https://indico.cern.ch/getFile.py/access?contribId=0&resId=0&materialId=slides&confId=158876

CMS pourios unity traduco

aTGC Result presentation (2)

- Another approach, used in our Wγ and Zγ paper
- In usual parameterization, non SM terms in lagrangian are scaled with $\alpha/\mathrm{M_V}^\mathrm{n}$
 - V: W or Z (this choice is arbitrary!)
 - n: chosen to ensure right dimensionality
- Proposal: reformulate with new physics scale $\Lambda_{\rm NP}$: $\dfrac{lpha}{M_V^n} o \dfrac{lpha'}{\Lambda_{NP}^n}$
- Set limits on alpha' as a function of LNP

aTGC parameters in CMS Analyses

Summary of aTGC configurations used for the most important channels

Channel	Fted aTGC parameters	Observable	Reference	Form Factor
WW→II _{VV}	λ_{z} , Δg_{1}^{z} , $\Delta \kappa_{\gamma}$	Pt(leading lepton)	PLB 699 (2011) 25–47	No
Wg → lγγ	$\lambda_{\gamma}, \Delta \kappa_{\gamma}$	ET(photon)	PLB 701 (2011) 535–555	No
Zg → IIγ	h_{3}^{γ} , h_{4}^{γ} , h_{3}^{Z} , h_{4}^{Z}	ET(photon)	PLB 701 (2011) 535–555	No
wz → III _V	λ_{z} , Δg_{1}^{z} , $\Delta \kappa_{z}$	Pt(Z)	Processing	No
ZZ → 4I	h_{3}^{γ} , h_{4}^{γ} , h_{3}^{Z} , h_{4}^{Z}	Studying	Processing	No

Considering other channels, notably ZZ -> llvv