2nd HERA-LHC Workshop

(Working Group 3)

Heavy Quarks

Hubert Spiesberger Universität Mainz

Conveners
Matteo Cacciari, HS (Theory)
Andrea Dainese, Achim Geiser (Experiment)

Review of the 1st workshop (theory) including some news from DIS2006

1st HERA-LHC Workshop

(Start-up meeting: March 2004, final presentation: March 2005)

Theory aspects:

Production: Benchmark cross sections
 Schemes: fixed-order / resummed; Monte Carlo

- Fragmentation
- Soft-gluon resummation
- $k_{\rm T}$ factorization (correlations in $Q\bar{Q}$ production, quarkonium production, associated Higgs + jet production)
- Λ / $\bar{\Lambda}$ asymmetries in the QGSM

Experimental aspects:

- Overview of HERA results (open charm, open beauty, quarkonium, F_2^c , F_2^b , $Q\bar{Q}$ correlations, $c \to H_c$ fragmentation)
- Detection: Trigger and Reconstruction at the LHC experiments

Heavy Quarks as a Test of QCD

Basic formulae:

$$d\sigma_Q = \int dx_1 dx_2 \int dz$$
 $f_{a/h_1}(x_1,\mu_F) f_{b/h_2}(x_2,\mu_F)$ PDFs for partons a, b
 $imes d\hat{\sigma}(a+b o Q+X)$ × hard scattering, produce heavy quark $Q=c,b$
 $d\sigma_H = \int dz \ d\sigma_Q imes D_{H/Q}(z,\mu_F)$ × fragmentation into hadron H
+ power corrections

Schemes:

massive scheme (FFNS): $m_Q \neq 0$, initial state: $a,b=g,q,\bar{q}$, final state: Q,\bar{Q} threshold region OK, large logs: $\ln(p_T^2/m_Q^2)$ massless scheme (ZM-VFNS): $m_Q=0$, initial state: $a,b=g,q,\bar{q},Q,\bar{Q}$ improvement at large p_T : resums large logs in heavy quark PDFs

Matching: transition region ? → FONLL, GM-VFNS

Heavy Quark PDFs

CTeQ: simplified ACOT (SACOT_χ)
 a general-mass (GM) scheme
 more natural parton kinematics:

$$\chi = x \left(1 + \frac{(\Sigma M)_{\text{final}}^2}{Q^2} \right)$$

- \rightarrow smooth and physical threshold behavior (F_2 , F_L)
- → simplicity
- Is there a non-perturbative charm component in the nucleon?
- → preliminary results shown at DIS2006
- → await more accurate data from HERA II impact on phenomenology at LHC

Charm and Gluon Distributions at Q = 1.3 GeV

Varying amounts of input lightcone charm components (à la Brodsky etal.): Momentum frac. at $Q_0 = 0 - 0.02$.

Charm PDF, Q = 1.3 GeV

Horizontal axis is scaled in $x^{1/3}$ —inbetween linear and log—in order to exhibit the behavior at both large and small x.

Charm and Gluon Distributions at Q² = (85 GeV)²

Varying amounts of input lightcone charm components (à la Brodsky etal.): Momentum frac. at Q0 = 0 - 0.02.

* Very substantial amount of charm, over the radiatively generated component (C6COI), still persists at this very large scale \rightarrow there can be interesting phenomenological consequences even at LHC.

Heavy Quark PDFs: NNLO?

W K Tung: NNLO not urgent: out-weighed by other sources of uncertainties, like parametrizations, power-law corrections

Roberts, Thorne: detailed prescription for DIS

structure function at NNLO

ZM-VFNS not feasible at NNLO: discontinuities in F_2^c !

TR-VFNS: shift m^2/Q^2 terms between coefficient functions imposing constraints (smoothness of $dF_2/d\ln Q^2$, freeze higherorder α_s terms when going through threshold $Q^2=m_c^2$)

 \rightarrow continuous F_2 , but discontinuous and negative PDFs

 F_2^c not well-defined at NNLO: not IR-safe

sophisticated and complicated

unclear how this works for other processes

Heavy Quark Fragmentation

up to now: FFs for $g,q,\bar{q},Q,\bar{Q}\to H$ fitted to phenomenological forms, HQ contribution "switched on" at threshold but

FFs have thresholds like PDFs, need matching across threshold (Cacciari, Nason, Oleari, see DIS2006)

now available: time-like equivalent of Collins-Tung relations for PDFs: parametrize light partons (g,q,\bar{q}) , generate HQ FFs radiatively

→ allow global fits

Oleari (DIS2006): fit to BELLE, CLEO and ALEPH data

include Tevatron and HERA II data

Benchmark Cross Sections

Different theoretical approaches, for single-inclusive HQ production:

- (F)MNR: fixed-order at NLO (for γp and pp)
- HVQDIS: fixed-order at NLO (for DIS)
- FONLL: NLO + leading log's resummed
- GM-VFNS: NLO + leading log's resummed
- CASCADE: MC, k_{T} factorization
- RAPGAP: MC, LO $\gamma^* g \rightarrow Q \bar{Q}$

same input (as far as possible: α_s , m_c , m_b , PDF)

uncertainty bands – mainly from scale variation: $\frac{1}{2}\mu_0 < \mu_F, \mu_R < 2\mu_0$ with $\mu_0 = m_{\rm T} =$

$$\sqrt{m_Q^2+p_{
m T}^2}$$
 or $\sqrt{4m_Q^2+Q^2}$ (for DIS)

To be improved: • dependence on PDF

- dependence on fragmentation
- MC implementation

Example: Beauty Photoproduction

Example: Beauty Production at the LHC

Soft-Gluon Resummation

Remnants of long-distance dynamics \rightarrow logarithmic terms, singular near edges of phase space.

Threshold resummation

perturbative result for observable ω

$$\omega = 1 + \alpha_s (L^2 + L + 1) + \alpha_s^2 (L^4 + L^3 + L^2 + L + 1) + \dots$$

resummed:

$$\omega = \exp\{Lg_1(\alpha_s L) + g_2(\alpha_s L) + \dots\} + \text{suppressed terms}$$

for the differential structure function $d^2F_2^Q/dTdU$ (Eynck, Laenen, Moch):

$$g_1(\lambda) = \frac{C_F}{\pi b_0 \lambda} (\lambda + (1 - \lambda) \ln(1 - \lambda))$$

with
$$\lambda=b_0\alpha_s\ln N$$
 and $L^i=\left(\frac{\ln^{i-1}(\rho)}{\rho}\right)_+$, $\rho=\frac{s_4}{m_Q^2}$, $M_{X\prime}^2=m_Q^2+s_4$

→ reduced scale dependence

Other observables? e.g. heavy quark + jet

Small-x Effects

 $(x < 10^{-4}, Q^2 \text{ in perturbative regime})$

GLRMQ

DGLAP + non-linear g recombination

- → enhanced gluon
- \rightarrow enhanced b production at LHC

KKMS

DGLAP + BK saturation effects k_T -factorization (unintegrated PDF)

- → suppressed gluon
- \rightarrow suppressed *b* production at LHC ?

Small-x Effects

GLRMQ

(Eskola, Kolhinen, Vogt)

- based on LO evolution
- → include NLO corrections!

KKMS*

(Jung, Kutak, Peters, Motyka)

- comprises:
 - + BFKL with subleading $\ln 1/x$ terms
 - + non-singular parts of DGLAP
 - + quark singlet from DGLAP
 - + non-linear terms from BK
 - + choice of scale in α_s
 - → unified prescription?
- no significant effect within ALICE/ CMS acceptance (Peters DIS2006)

Let $pp \rightarrow c + X$ at the LHC decide?

^{*} Kutak, Kwiecinski, Martin, Stasto

Conclusion for Heavy Quarks at the LHC

- PDFs: input comes from HERA I/II compare TR-VFNS and SACOT_χ! Do we need NNLO ?
- FFs: global fits ? Include Tevatron and HERA II data!
- Benchmark cross sections: source of discrepancies (FF?), improve MC implementation and test at HERA II!
- HQ schemes: work out also for signal processes ($b+\bar{b}\to H$, $c+s\to H^+$, but also $W/Z/\gamma+$ tagged HQ) !
- k_T factorization: use HERA II data to determine unintegrated PDFs \rightarrow work out predictions for LHC!