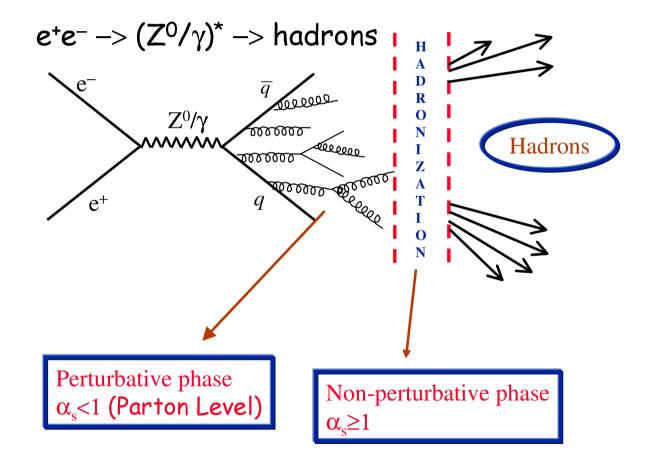
Charm Fragmentation Function

Zuzana Rúriková

HERA LHC Workshop – June 7, 2006

• Introduction


- e^+e^- experimental results
- *ep* experimental results
- How to test universality?

Motivation

Charmed hadrons, i.e. D^* , D^{\pm} , ... often used for tagging of charm events.

In order to extract information about **underlying physics** one needs to know more about the **non-perturbative part of the process**:

- Fragmentation fractions
- Fragmentation functions

Factorization

 \triangleright cross section for process $pp \rightarrow H + X$:

 $\sigma_H = \sum_{i,j} f_{i/p}(x_1, \mu_f) \otimes f_{j/p}(x_2, \mu_f) \otimes \hat{\sigma}_{ij \to cX}(\alpha_s(\mu_r), \mu_r, \mu_f) \otimes D_c^H(z, \mu_f)$

Parton Density Function

Hard Scattering (perturbative)

⇒ non-perturbative FF depends strongly on the choice of perturbative description (LO, NLO, NLL, … or LO+PS Monte Carlo)

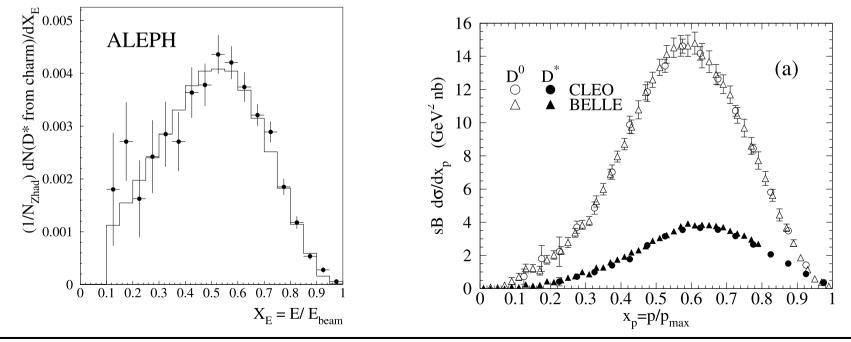
- hence one should be careful and use them consistently (including scale values, and parameter settings)
- ▷ ignoring this fact can cause serious problems (e.g. discrepancy between data and theory for beauty X-sections at TEVATRON of factor 2-3)

Fragmentation Function (FF):

provides information about the energy fraction which is transferred from quark to a given meson (the larger m_Q the harder the fragmentation function)

Questions to be answered:

▷ what's the **proper parametrization** of non-perturbative frag. function?


- Peterson: $f(z) \propto 1/[z(1-\frac{1}{z}-\frac{\varepsilon}{(1-z)})^2]$
- Kartvelishvili: $f(z) \propto z^{\alpha}(1-z)$
- Lund symmetric: $f(z) \propto \frac{1}{z}(1-z)^a \exp(-\frac{bm_t^2}{z})$
- Bowler: $f(z) \propto \frac{1}{z^{1+r_b m_t^2}} (1-z)^a \exp(-\frac{bm_t^2}{z})$
- ▷ is fragmentation function universal? (i.e. are FF portable from e⁺e⁻ to ep and pp?)

Charm Fragmentation Function Measurements in e^+e^-

- \triangleright $FF(c \rightarrow D)$ measured in terms of x observables:
 - $x = E_D/E_{\text{beam}}$ at large \sqrt{s} • $x = p_D/p_{\text{max}}$ at small \sqrt{s} , where $p_{\text{max}} = \sqrt{E_{\text{beam}}^2 - m_D^2}$

ALEPH measurement at Z^0 resonance ($\sqrt{s} = 91.2$ GeV).

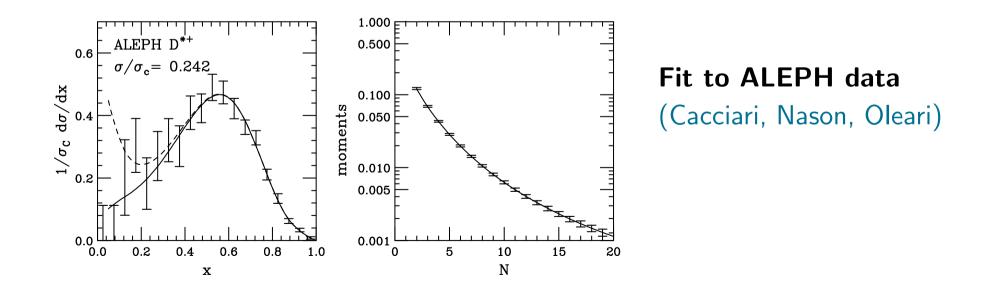
Recent precise measurements from CLEO and BELLE near the $\Upsilon(4S)$ ($\sqrt{s} = 10.6$ GeV).

Extracted FF for Monte Carlo

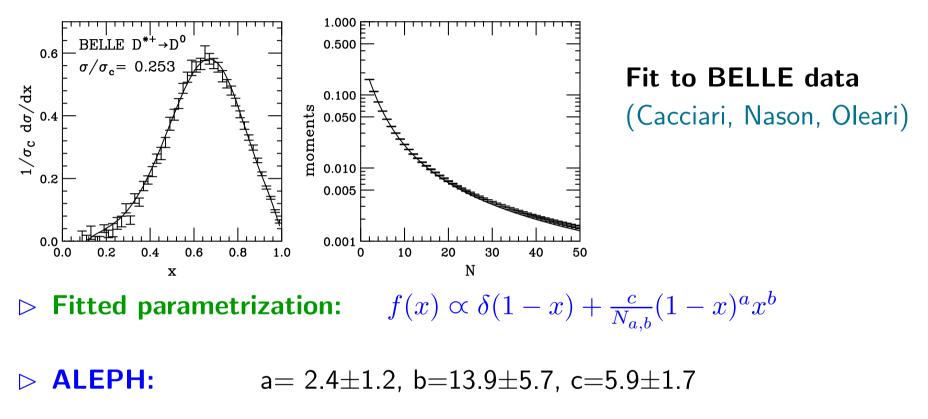
- JETSET/PYTHIA: LO +PS Monte Carlo with Lund string fragmentation model
- \triangleright $FF_{\rm np}$ obtained from χ^2 fit to $d\sigma/dx$ distribution
- \triangleright quantitative picture of BELLE analysis for $FF(c \rightarrow D^*)$:

Bowler:	$\chi^2/N_{DF} = 541.8/55$
Lund symmetric:	$\chi^2/N_{DF} = 965.6/55$
Kartvelishvili:	$\chi^2/N_{DF} = 1271.1/54$
Collins-Spiller:	$\chi^2/N_{DF} = 1540.7/54$
Peterson:	$\chi^2/N_{DF} = 3003.0/54$

Bowler parametrization with two free parameters provides best description of data, but in general for all cases χ^2 is very bad.


Extracted FF for NLO+NLL+soft gluon Resummation I.

▷ Fits of non-perturbative FF performed in **Mellin moment space**:


$$\widetilde{FF}(N) = \int_0^1 x^{N-1} FF(x) dx$$

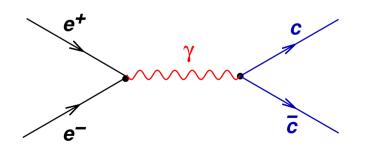
> Advantage: Mellin transform turns convolution into simple product

$$FF(x) = FF_{\text{pert}} \otimes FF_{\text{np}}(x) \rightarrow \widetilde{FF}(N) = \widetilde{FF}_{\text{pert}}(N) \times \widetilde{FF}_{\text{np}}(N)$$

Extracted FF for NLL+soft gluon Resummation II.

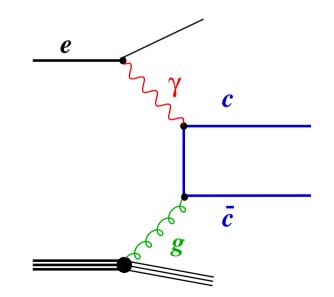
 \triangleright CLEO/BELLE: a= 1.8±0.2, b=11.3±0.6, c=2.46±0.07

Fits not in agreement! Does universality of FF_{np} not hold?


From e^+e^- to ep Collisions

$$e^+e^-$$
 collisions

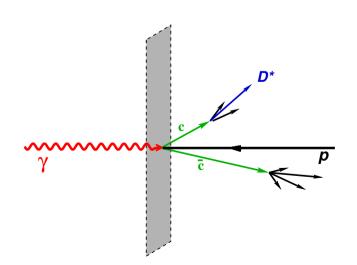
▷ natural choice:


$$z = \frac{E_{D^*}}{\sqrt{s}/2} = \frac{E_{D^*}}{E_{\text{beam}}}$$

assuming LO processes - direct measurement of non-perturbative fragmentation function

ep collisions

- $\triangleright \text{ energy of } c\text{-quark unknown} \Longrightarrow$ choice of z observable not so obvious
- differences: IPS contribution, different color flow

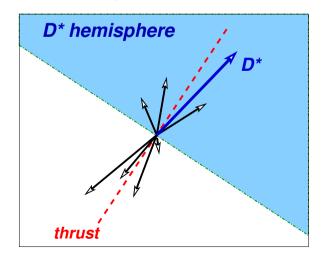

Definitions of Fragmentation Observables in ep

Jet method:

momentum of c-quark approximated by momentum of rec. D*-jet

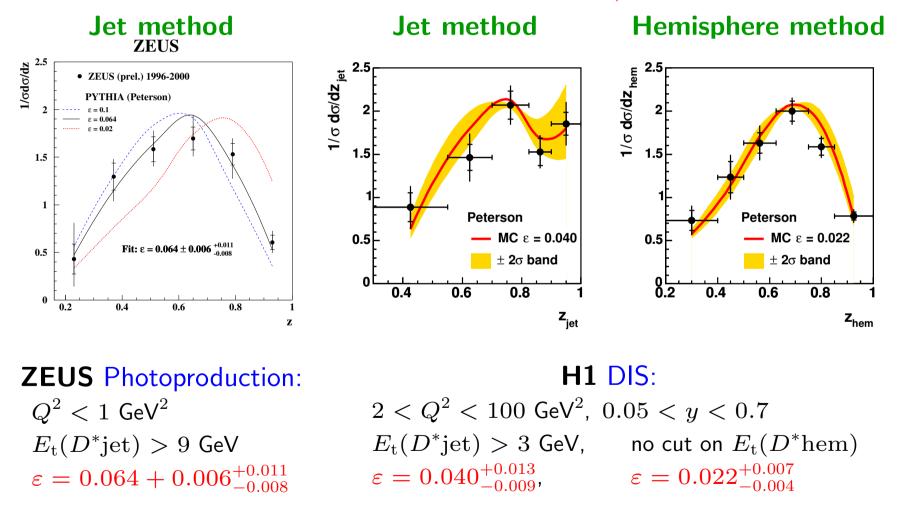
$$\mathbf{z}_{jet} = \frac{(E+p_{\rm L})_{D^*}}{(E+p)_{jet}}$$

 $\triangleright k_{\perp}$ -clus jet algorithm applied



Hemisphere method:

> momentum of c-quark approximated by momentum of rec. D^* -hemisphere


$$\mathbf{z}_{\text{hem}} = \frac{(E+p_{\text{L}})_{D^*}}{\sum_{\text{hem}}(E+p)_i}$$

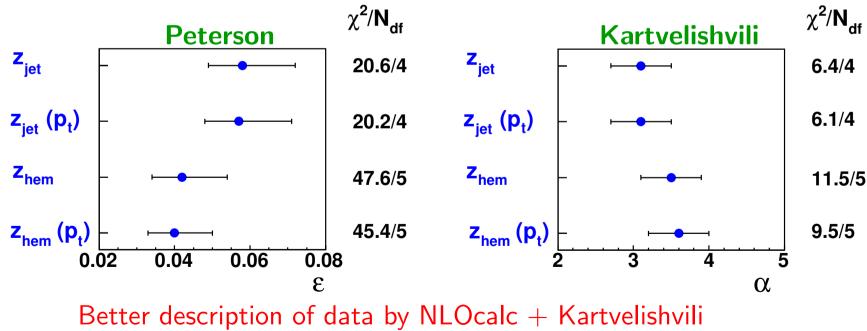
- $\triangleright \eta(\text{part}) > 0$ for *p*-remnant suppression
- > thrust axis in plane perpendicular to γ used for hemisphere division

Extracted FF for Monte Carlo

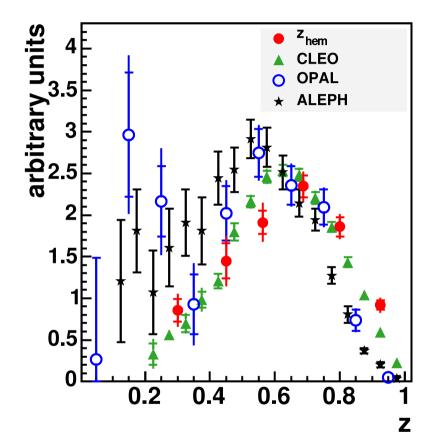
▷ extracted parameters for PYTHIA, resp. RAPGAP/PYTHIA MC

▷ H1: differences between hemisphere and jet method

- constraining both methods to the same kinematic phase space (demand E_t(D*jet) > 3 GeV also for hem. method) both methods give ε ≈ 0.040 ⇒ methods are consistent
- indication for MC having problem close to kinematic threshold?
- improper parametrization FF_{np} ?


▷ difference between H1 and ZEUS jet method results

• different MC parameter settings:


- fraction of D^* -mesons originating from decays of higher excited charm states $(D^{**} \rightarrow D^*X)$, in H1 analysis $\sim 27\%$ (ZEUS 0%)
- presence of D^{**} states results in softer $FF(c \rightarrow D^*)$ spectrum \implies the extracted fragmentation function is expected to be harder
- turning off D^{**} states in H1 z_{jet} analysis leads to $\varepsilon = 0.075^{+0.019}_{-0.017}$, consistent with ZEUS result

Extracted FF for NLO pQCD Calculation

- HVQDIS: full massive NLO pQCD calculation
- \triangleright Fragmentation procedure: c-quarks fragment independently in γp -frame
 - D^* momentum fraction generated according to Peterson/Kartvelishvili
 - possibility to add small perp. momentum component $< p_t(D^*) > \approx 350 \text{ MeV}$
 - decay chains $D^{**} \rightarrow D^*X$ not included
- **b** fits performed to data distributions corrected to parton level

Comparison of Experimental results I

H1 hemisphere method $<\sqrt{\hat{s}}>\approx 8 \text{ GeV},$ $z = \frac{(E+p_L)_{D^*}}{\sum_{hem}(E+p)}$

CLEO $\sqrt{s}=10.6$ GeV, $\mathrm{z}=p_{D^*}/p_{\mathrm{max}}$

$$egin{aligned} \mathsf{OPAL}\ \sqrt{s} &= 91.2 \; \mathsf{GeV}, \ \mathrm{z} &= 2 E_{D^*} / \sqrt{s} \end{aligned}$$

ALEPH
$$\sqrt{s}=91.2$$
 GeV, $\mathrm{z}=2E_{D^*}/\sqrt{s}$

b different observable definitions

Comparison of Experimental results II

_	type	exp.	Parametrization		fit. value	$\chi^2_{ m min}/N_{ m df}$
-	e^+e^-	OPAL	Peterson	ε	$0.035 \pm 0.007 \pm 0.006$	5.2/6
			Kartvelishvili	lpha	$4.2\pm0.5~0.4$	11.5/6
			Lund	a	$1.95^{+0.78}_{-0.53}\pm 0.08$	
				b	$1.58^{+0.64}_{-0.42}\pm0.06$	3.4/5
-	e^+e^-	ALEPH	Peterson	ε	0.034	
-	e^+e^-	CLEO	Lund	a	0.18	—
				b	0.40	—
-	e^+e^-	BELLE	Peterson	ε	0.054	3003/54
			Kartvelishvili	lpha	5.6	1271/54
			Lund	a	0.58	
				b	default	965/55
-	ep	ZEUS	Peterson	ε	$0.064 \pm 0.006^{+0.011}_{-0.008}$	
-	ep	H1 $z_{\rm hem}$	Peterson	ε	$0.022\substack{+0.007\\-0.004}$	5.3/5
			Kartvelishvili	lpha	$5.1\substack{+0.8 \\ -0.7}$	4.2/5
-	ep	H1 z_{jet}	Peterson	ε	$0.040\substack{+0.013\\-0.009}$	3.8/4
_			Kartvelishvili	lpha	$3.8\substack{+0.6\\-0.5}$	4.4/4

Direct comparison of Monte Carlo fits impossible due to different parameter settings!

How to Test FF Universality?

▷ Idea: rerun H1 analysis with BELLE MC steering?

• steering available, let's see if it will work

\triangleright What about D^{**} states?

- in moment we use 'ALEPH tune' ($\approx 27\%$ of D^* produced via D^{**} decays)
- are there any recent recommended measurements, i.e. branching fractions?