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1. Introduction

Elastic nucleon collisions at high energies:

due to hadron interactions at all  t & Coulomb interactions at small  |t|

influence of both interactions (spins neglected) … Bethe (1953)

FC(s,t)  … Coulomb (QED),      FN(s,t)  … hadronic amplitude

αΦ(s,t) … relative phase ;      α=1/137.36   …fine structure constant    

West–Yennie (1968)  (for large  s )
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• some assumptions and adding dipole form factors   fj(t) →
simplified West-Yennie formula

relative phase                                              

• fitting data

→ constant and averaged values of

is WY integral formula correct?

what approximations used for simplified WY?

t independence of  B, ρ ?
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general belief: no limitation of relative phase

phase real → imaginary part of integrand should be zero for all  t ;   

phase and modulus ( s depressed):

2. Limitations involved in West-Yennie approach
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• both I1(t), I2(t)  proper integrals if ζ(t)  has bounded derivatives 

• higher derivatives
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• key question: what ζ (t) solves     I1(t) – I2(t) = 0 ?    

• d I1(t) – d I2(t) = 0
d I1(t) + pt d I2(t) = 0,  pt >0     → d I1(t) ≡ 0,  d I2(t) ≡ 0

• boundary condition:     Ij(0)=Ij(-4p2)=0, j=1,2        →

• [Ij(0)](n) ≡ 0, j=1,2;                                                      →

f(0,0) = 0   → ζ’(0) = 0;   similarly also ζ(n)(0)=0

Taylor series expension at t=0   → ζ(t)=const       →
ρ(t) = tan ζ(t) = const    ...  independent of   t !!!
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3. West-Yennie approach and data

t  independence of  ρ ?     → first derivative of ρ is zero  →

valid for all  t

data: diffractive minimum at  tD →→

…contradiction  → diffr. minimum excludes ρ=const

→→

→→

assumptions needed for simplified WY formula:

• spin neglected

• |FN(s,t)| ~ eBt for all  t   (-4p2, 0)

are assumptions fulfilled by data?
V.K., M. Lokajíček, Phys. Lett. B 611 (2005) 102

∈
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change of  magnitude         from optical point to diffractive minimum:

~ 8 ~ 7÷8 ~ 5÷6                        ~ 4
change of |FN(s,t)| ::

~ 4. ∼ 3.5 ÷ 4. ∼ 2.5 ÷ 3                       ∼ 2

-t [GeV2 ] (0., 1.5)    (0., 1.35)            (0., 0.8)                     (0., 0.4)  

•|FN(s,t)|   “approximately” exponential for small region  of t                   
becomes narrower when energy increases with  |t|  !!!
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• deviations from exponential behavior rise strongly with increasing  s

• measure of deviations:  diffractive slope       

constant slope  B(s) corresponding to WY 
formula for FC+N(s,t)

•• integral and simplified WY formulas contradict experimental data

•• however: before ISR experiments nothing known about diffractive 
structure → WY amplitude might be used
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Fch.e.(s,t) = FN
pp(s,t) – FN

np(s,t)

• strongly interacting hadronic amplitudes  → conservation of isospin

• data ( plab ~  300 GeV/c)
pp [Burq et al: Nucl. Phys. B217 (1983) 285],   np [Arefiev et al: Nucl. Phys. B232 (1984) 365)          

np → pn [Barton et al: Phys. Rev. Lett. 37(1976) 1656, 1659 Landolt-BornsteinVol. 9, Springer 1980]

(pp)el (np)el np → pn

-t [GeV2] dσ/dt [mb/GeV2] dσ/dt [mb/GeV2] dσ/dt [μb/GeV2]

.003          103.34 ± 4.1                         77.09 ± .80                         6.14 ± .006

.023            58.27 ± 1.1                         61.80 ± .71                         4.24 ± .004       

→ dσ/dt [np → pn] ~ 10 -5 * dσ/dt[np]

→ FN
pp(s,t) ≡ FN

np(s,t)

• np measured up to  t = 10-5 GeV2 → compatible with  eBt

(valid at any s  and t )

4.   Extrapolation of hadronic amplitude to  t  ~  0

(Arefiev et al (1984))

(see Appendix A)
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5. Approaches based on impact param. representation
(Franco (1966,1973), Lapidus et al. (1978), Cahn (1982), (Franco (1966,1973), Lapidus et al. (1978), Cahn (1982), ……, V. K., M. , V. K., M. LokajLokajííččekek (1994))(1994))

• used eikonal models based on approximate form of Fourier-Bessel       
transformation valid at asymptotic  s and small  |t|

•• mathematically rigorous formulation (valid at any  s and   t )                
(Adachi et al., Islam (1965 – 1976))   

additivity of pottentials → additivity of eikonals (Franco (1973))

• total scattering amplitude

→
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convolution integral

•• equation describes simultaneous actions of both Coulomb and 
hadronic interactions; to the sum of both amplitudes new complex 
function (convolution integral) is added

• at difference with WY amplitude (Coulomb amplitude multiplied 
by phase factor only)

• valid at any s and t
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•• general formula valid up to terms linear in α (V. K., M. Lokajíček, Z. Phys.              
C63 (1994) 619)

•• [1 ± iα G(s,t)] ~ exp(± iα G(s,t))

→ complex  G(s,t) cannot be interpreted as mere change of phase

→ G(s,t)  … real     ↔ ρ(s,t) … constant in t

• use:  data analysis (see Appendix B) or model predictions
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6. General formula and luminosity at LHC

•• different total (eikonal and WY) amplitudes → different 
luminosity determinations

WYWY
eikonaleikonal

(Kašpar & Smotlacha: to be published)
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7. Conclusion

WY integral formula: hadronic amplitudes with constant  quantity  ρ

simplified WY amplitude: in contradiction with data

WY approach leads to false results at high energies

approach based on eikonal model ≡ suitable tool for analyzing high-
energy elastic hadron scattering amplitude   →
t  dependence of its modulus and phase needed at all allowed  t

dynamical characteristics of elastic hadronic amplitude determined 
by its t dependence, i.e.,  σtot , ρ, B are  model dependent quantities

influence of Coulomb scattering cannot be neglected at higher |t|
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• elastic hadronic amplitude  FN(s,t)  (strong interactios)  →
conservation of isospin

• NN scattering … isospin states

|NN>≡|j1 j2;m1m2>= | j1j2;JM><j1j2;JM|j1j2;m1m2>

|pp>=|½½;11>,    |np>=    ½ |½½;10> +  ½ |½½;00>,

|nn>=|½½;1-1>

• define (isospin conserved)

<I I3|FN(s,t)|I’ I3’ > = F2I (s,t) δII’ δI3 I3’

<pp|F N(s,t)|pp> = F2 (s,t),  <np|FN(s,t)|np> = ½ F2(s,t) + ½F0(s,t)

<np|Fch.e.(s,t)|pn> = ½ [F2(s,t) – F0(s,t)]        →

∑
MJ ,

Appendix A: Conservation of isospin

Fch.e.(s,t) = FN
pp(s,t) – FN

np(s,t)
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(V.K., Lokajíček, Z. Phys. C 63 (1994) 619)

different values ofdifferent values of

Appendix B: Analysis of data
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modulusmodulus

phase (peripheral)phase (peripheral)

phase (central)phase (central)
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Influence of Coulomb scattering Influence of Coulomb scattering 
cannot be neglected at higher |t| !!!cannot be neglected at higher |t| !!!


