The CASCADE and RAPGAP MCs

H. Jung (DESY)

- CASCADE
 - basic idea
 - applications - benchmarks
 - future plans

- RAPGAP
 - ideas
 - applications - benchmarks
 - future plans
BGF matrix element off shell

evolution of parton cascade:

\[\tilde{P} = \bar{\alpha}_s \left(\frac{1}{1-z} + \frac{1}{z} \Delta_{n.s} + \ldots \right) \]

initial distribution ~ flat

\[\sigma(ep \rightarrow e'q\bar{q}) = \int \frac{dy}{y} d^2 Q d\frac{x_g}{x_g} \int d^2 k_t \hat{\sigma}(\hat{s}, k_t, Q) x_g A(x_g, k_t, \bar{q}) \]

\[\int d^2 k_t x_g A(x_g, k_t, \bar{q}) \approx x_g G(x_g, Q^2) \]
CASCADE MC generator

- DGLAP or CCFM
 ➔ only inclusive predictions
 ➔ no information on emitted partons
- CCFM treats explicitly partons emitted during cascade color coherence energy momentum conservation

- best to implement in MC generator
 ➔ compare evolution and parton shower
- need unintegrated parton densities
Processes included (gluon induced)

\[\gamma g^* \rightarrow q\bar{q}, \quad \gamma g^* \rightarrow Q\bar{Q}, \quad \gamma g^* \rightarrow J/\psi g \]

\[g^* g^* \rightarrow q\bar{q}, \quad g^* g^* \rightarrow Q\bar{Q}, \quad g^* g^* \rightarrow h \]

- initial state parton shower, backward evolution, according to CCFM
- final state PS
- p-remnant treatment
- hadronization

NEW:

using LHA interface to PYTHIA/HERWIG
for
- final state PS
- p-remnant
- hadronization

CASCADE for ep and pp
CASCADEx and coll. NLO calcs

- fit of uPDF to inclusive structure functions /x-sections used to determine normalization
 ➔ includes “all-orders” !!!!
- off-shell matrix element simulates part of real NLO corrections
 ➔ study of scale dependence
 ➔ compare to coll. NLO calculations
 ➔ check with benchmark x-sections
"Perfect" agreement of NLO(FMNR) calc with CASCADE on quark and hadron level for $x<0.01(y>2)$!!!
Charm and Beauty at the LHC

Benchmarks at hadron level in central region

MNR (massive NLO) – FONLL (matched NLL) – CASCADE (uPDF) - VFNS

MNR band
FONLL band
CASCADE
VFNS

pp → D^+ X

|y| < 2.5

MNR band
FONLL band
CASCADE
VFNS

pp → B X

|y| < 2.5

CASCADE agrees well with MNR and FONLL for charm and beauty.
VFNS is larger for charm at small p_t ...

All agree reasonably well ...But large uncertainties !!!
pt and phi correlations at LHC

- transverse momentum of quark-antiquark system \(p_T(Q\bar{Q}) \)
- azimuthal separation between two heavy quarks \(\Delta \phi(Q\bar{Q}) \)

from HERA-LHC proceedings 2005 O. Behnke et al, p 405

CASCADE has smaller uncertainties !!!
Phi correlations at HERA

- azimuthal separation between two heavy quarks $\Delta \phi (Q\bar{Q})$

watch out uncertainties in CASCADE and FMNR !!!
Features

- variation of renormalization scale
 - using uPDFs accordingly determined
 ➔ smaller uncertainty from theory
- various sets of uPDFs included (but only CCFM/KMR with parton shower):
 - CCFM
 - KMR
 - KMS
 - saturation model
 - derivative of integrated gluon
 - etc ...
- KMR prescription: one additional radiation ... useful for determination of hadronization corrections for NLO calcs
- full PYTHIA final state PS & remnant treatment included
 ➔ applicable for $t\bar{t}$ -production
Future Plans

- Multiple Interactions in k_t factorization
 - connect MI with saturation and diffraction
 - including hard diffraction
- Inclusion of quarks in evolution
 - gluon in proton or coming from quark? issue on intrinsic k_t
 - is it gaussian or $1/k^2$
- Inclusion of other processes
 - W/Z production, prompt photons etc
RAPGAP event generator

- historically first version for hard diffraction in \(ep \)
 - Rapidity Gap events
 - including hard diffraction via 2-gluons and resolved pomeron
- including latest diffractive PDFs
- developed to full MC event generator for \(ep \) (including non – diffraction)
 - NOW also applicable for \(pp \)
 - including resolved virtual photons
- initial and final state parton showers (a la DGLAP)
- NOW:
 - final state PS, p-remnant treatment and hadronization a la PYTHIA/HERWIG
 - via LHA interface.
Future Plans for RAPGAP

- Multiple Interaction via PYTHIA also for DIS (resolved photoproduction)
- double diffraction also for pp
- double pomeron Higgs

⇒ Any other special processes for LHC needed?
Benchmark x-sections

- Compare parton level, visible D* and muon x – sections

reasonable agreement between NLO, RAPGAP and CASCADE
Conclusions

- **CASCADE**
 - alternative event simulation (k_t-factorization)
 - “reliable” predictions for gluon induced processes
 - future extensions:
 ➔ multiple interactions
 ➔ W/Z production
 ➔ prompt photons
 ➔ other processes?

- **RAPGAP**
 - simulation horse at HERA for diffraction and non-diffraction
 - future:
 ➔ Higgs (diffraction)
 ➔ others?

- **Feed back is very welcome**
- **Interesting to see applications to pp !!!!!!!**