Three- and four-jet states in photoproduction at HERA and the γp underlying event.

Tim Namsoo (University of Bristol)

HERA LHC workshop, June '06, CERN.

- Motivation
- Variable definitions
- Cross section definition
- JIMMY MPI tune
- Results:
 - compared to Monte Carlo
 - compared to $\mathcal{O}(\alpha \alpha_s^2)$ pQCD
- Summary

Motivation

- ...more lumi, more inclusive phase-space region, 1st 4-jet results at HERA... BUT why multi-jets?
- Test of pQCD in PHP at high orders of α_s :
 - n-jet direct PHP is $\mathcal{O}(\alpha \alpha_s^{(n-1)})$ (tree-level)
 - highest order PHP theory is $\mathcal{O}(\alpha \alpha_s^2)$ (3-jet)
 - in anticipation of $\mathcal{O}(\alpha \alpha_s^3)$ pQCD in PHP
 - highest order process studied at HERA
 - PHP Q^2 not a hard scale & possibility of MPIs
- MPIs not present in pQCD calculations \Rightarrow use MC
- LO ME+PS MC relies on PS to generate multi-jets
- Can test this approach & look for sensitivity to MPIs
 → test/tune MPI models.
- Multi-jet HFS and MPIs will be abundant at the LHC & next generation colliders.

T. Namsoo

DIS2006, Japan.

Variable definitions

•
$$M_{\rm nj} = \sqrt{(\sum_i^{\rm n} p_i)^2}$$

•
$$x_{\gamma}^{\text{obs}} = \sum_{i}^{\mathsf{n}_{\text{jet}}} \frac{E_{\text{t,i}} \exp(-\eta_i)}{2yE_e}$$

multi-jet variables:

- S. Geer & T. Asakawa (Phys. Rev. D53, 4793 (1996))
- evaluated in n-jet COM frame with multi-jet numbering
- n-jet state collapsed into pseudo-3-jet state

•
$$\cos(\Psi_{3^{(\prime)}}) = \frac{(\mathbf{p}_{\text{beam}} \times \mathbf{p}_{3^{(\prime)}}) \cdot (\mathbf{p}_{4^{(\prime)}} \times \mathbf{p}_{5^{(\prime)}})}{|\mathbf{p}_{\text{beam}} \times \mathbf{p}_{3^{(\prime)}}| |\mathbf{p}_{4^{(\prime)}} \times \mathbf{p}_{5^{(\prime)}}|}$$

•
$$\cos(\theta_{3^{(\prime)}}) = \frac{\mathbf{p}_{\mathsf{beam}} \cdot \mathbf{p}_{3^{(\prime)}}}{|\mathbf{p}_{\mathsf{beam}}||\mathbf{p}_{3^{(\prime)}}|}$$

•
$$X_{\mathbf{i}^{(\prime)}} = \frac{2E_{\mathbf{i}^{(\prime)}}}{E_{\mathbf{3}^{(\prime)}} + E_{\mathbf{4}^{(\prime)}} + E_{\mathbf{5}^{(\prime)}}}$$

schematic of 3-jet angles

 $\mathbf{p}_{\mathsf{beam}} = \mathbf{p}_{\mathsf{elec}} - \mathbf{p}_{\mathsf{prot}}$

DIS2006, Japan.

T. Namsoo

Cross section definition

- Jet requirements (lab frame)
 - $E_T^{\text{jet}_{1,2}} > 7 \text{ GeV}$
 - $E_T^{\text{jet}_{3,4}} > 5 \text{ GeV}$
 - $|\eta^{\text{jet}}| < 2.4$
- Kinematic region
 - 0.2 < y < 0.85
 - $Q^2 < 1.0 \text{ GeV}^2$
 - $-\cos(\theta_{3^{(\prime)}}) < 0.95$
 - $-X_{3^{(\prime)}} < 0.95$
- Jets: inclusive k_T algorithm & massless
- Two mass regions studied:
 - semi-inclusive ($M_{nj} \ge 25 \text{ GeV}$)
 - high mass ($M_{nj} \ge 50 \text{ GeV}$)

Monte Carlo curves

- PYTHIA 6.2 & HERWIG 6.5 both with & without MPIs
 - PYTHIA MPIs from simple model.
 - HERWIG MPIs from JIMMY 4.0 model.
- PYTHIA MPIs tuned to collider data (JETWEB).
- HERWIG MPIs tuned to ZEUS multi-jet data.

ZEUS

DIS2006, Japan.

JIMMY MPI tune - the strategy

- Fix "k-factor": the (hypothetical) ratio of the data divided by the LO+PS MC, if there were no MPIs.
- Assume LO+PS MC describes energy dependences etc. of hard interaction perfectly i.e. same k-factor applies at all energies - not correct but no additional info to refine assumption.
- Once k-factor applied to MC, the remaining differences are therefore assumed to be due to something either non-perturbative (e.g. could be incorrect PDFs) or something absent from the simulation assume the latter, assume MPIs.
- Thus, the question is, what MPI model/tune will augment the LO+PS×k-factor MC till it agrees with the measured cross section and its dependences on observables e.g. x_{γ}^{obs} ?
- Could (simultaneously) tune to any number of measured differential cross sections but chose $d^2\sigma/dx_{\gamma}^{obs}dM_{nj}$, binned finely in x_{γ}^{obs} (shape v. sensitive to MPIs) and coarsely in M_{nj} (to ensure correct energy dependence).
- Also, tune parameters simultaneously to 3- and 4-jet data.

JIMMY MPI tune - the tuning parameters

- p_T^{\min} : min p_T of primary int.
- p_T^{mpi} : min p_T of secondary int's.

- R_p^{-2} : inversely scales proton transverse area
- P_{had}^{-1} : inversely scales prob that γ resolves

- evaluate the *k*-factor

- Evaluate k-factor as ratio of data/(MC no MPIs) at high mass (≥ 70 GeV) where MPIs are expected to be negligible - would go higher if possible but start to run low on stats.
- Using this approach it is clearly apparent that *k*-factor for 3-jets ($k_{3j} = 1.8$) is different to that of 4-jets ($k_{4j} = 2.4$). These numbers are generator/tune dependent.
- Surprising? LO 3-jet process $\mathcal{O}(\alpha \alpha_s^2)$ whereas 4-jet $\mathcal{O}(\alpha \alpha_s^3)$, so probably related to order of process and order dependence in LO+PS MC. Also possible that MPIs affect the 4-jet data beyond $M_{4j} = 70$ GeV.

JIMMY MPI tune - the p_T^{min} & p_T^{mpi} parameters

- Want σ to be independent of p_T^{\min} around value chosen.
- MPIs can affect the σ by supplementing the energy of soft primary interaction jets, pushing them into the kinematic region of study.
- If p_T^{\min} too high, the soft primary jets are not present and MPIs have less impact on $\sigma \implies p_T^{\min}$ dependent on p_T^{\min} .

Chose to use as low a values as poss:

- $p_T^{\min} = 2.0 \text{ GeV}$
- $p_T^{\text{mpi}} = 1.8 \text{ GeV}$

DIS2006, Japan.

JIMMY MPI tune - the p_T^{min} & p_T^{mpi} parameters

- If $p_T^{\min} = 2.0 \& p_T^{mpi} = 1.8$ and $R_p^{-2} \& P_{had}^{-1}$ set to default, JIMMY grossly overestimates MPI affect.
- default values are: $R_p^{-2} = 1$ & $P_{had}^{-1} = 300$

JIMMY MPI tune - in the R_p^{-2} & P_{had}^{-1} phase space

- contours on the surface in the (R_p^{-2}, P_{had}^{-1}) plane marked out by the χ^2 difference between the x_{γ}^{obs} distribution in the data and different MC sets.
- best tune values relate to the minimum, S_{min} , and uncertainty roughly estimated using projection of contour at $S_{min} + 1$ onto either axis.

$$R_P^{-2} = 0.400 + 0.012 \\ -0.005 \\ P_{had}^{-1} = 151.0 + 0.5 \\ -2.5$$

• would be interesting to see how the value of R_P^{-2} compares to that from a similar $p\bar{p}$ tune - would suggest the validity of the model and scope for extrapolating to different beams/energies.

• MCs without MPIs describe $d\sigma/dx_{\gamma}^{obs}$ at high M_{3j}

- MCs without MPIs fail to describe low x_{γ}^{obs} region at low M_{3j} MC requires additional component.
- MC predicts MPIs augment low x_{γ}^{obs} but don't affect high x_{γ}^{obs} are MPIs the missing component?
- PYTHIA MPI model prediction excessive tuned HERWIG+MPI describes x_{γ}^{obs} very well.
- MC predicts peaks partly due to direct (LO definition) but significant resolved PHP contributions.

Q

T. Namsoo

- MCs without MPIs significantly underestimates low x_{γ}^{obs} region at low M_{4j} .
- MC without MPIs also slightly underestimates low x_{γ}^{obs} region at high M_{4j}
- PYTHIA MPI model prediction v. excessive tuned HERWIG+MPI describes x_{γ}^{obs} very well.
- 4-jet data more sensitive to missing component sensitivity stretches to higher mass MPIs?

- from now on will assume that the missing component from the MCs without MPIs is due to MPIs.
- cross sections fall exponentially with increasing M_{nj} low M_{nj} suppression due to selection criteria.
- MC predicts MPIs augment low M_{nj} cross section pad out phase-space reduced by selection cuts
- PYTHIA MPI excess still apparent. HERWIG MPIs good no MPIs for $M_{3j} \gtrsim 50$ & $M_{4j} \gtrsim 70$ GeV.

ZEUS

- jet broadness: $B_j = \left(\sum_i |\mathbf{h}_i \times \mathbf{p}_j|\right) / \left(\sum_i |\mathbf{h}_i| |\mathbf{p}_j|\right)$ (sensitive to transverse energy flow in jet)
- note: different PYTHIA k-factors want to observe how each model affects the jet shape.
- clearly the MC without MPIs predicts too narrow jets MPIs could account for the broadening
- PYTHIA simple model and JIMMY predictions very similar in 4-jet case but less so in 3-jet.

- Both MCs with MPIs give a poor description of the shape of $d\sigma/dy...$
- ...but MCs without MPIs describe shape well. MPI models causing the problem?
- if so, $d\sigma/dy$ good for tuning/testing models but hard not to imagine MPIs not (slightly) y dependent.
- suggests MPIs not the only problem?
- same observations made in the 4-jet $d\sigma/dy$ distributions.

The pQCD calculation

- $\mathcal{O}(\alpha \alpha_s^2)$ pQCD is lowest order for 3-jet process.
- E_T^{jet1} used for renormalisation & factorisation scales.
- theoretical uncertainty evaluated using $2^{\pm 1}E_T^{\text{jet1}}$ for scales.
- the CTEQ4L proton & GRV-G LO photon PDFs were used.
- theory convoluted with hadronisation and MPI corrections:

 $C_{\rm had} = \sigma_{\rm HL} / \sigma_{\rm PSL}$ & $C_{\rm MPI} = \sigma_{\rm HL}^{\rm MPI} / \sigma_{\rm HL}^{\rm noMPI}$

Comparison with the data

- theory describes high mass but fails for $M_{3j} \lesssim 50$ GeV.
- discrepancy could stem from:
 - incorrect modelling of the either corrections
 - missing higher-order processes
- the had. corrections are flat unlikely to be the cause.
- the MPI corrections dependent on M_{3j} underestimated?
- an NLO calculation could help a lot if NLO $\otimes C_{had} \otimes C_{MPI}$ describes data well, would have more faith in C_{MPI}

DIS2006, Japan

Comparison with the data theory again describes

- theory again describes , high mass data well...
- ... but is poor for $M_{3j} < 50$ GeV.
- both sets of corrections
 are flat in cos(ψ₃)
- so unlikely sole cause of problems
- therefore likely data is sensitive to $\mathcal{O}(\alpha \alpha_s^3)$ + processes.

ZEUS

15

Summary

- Three- & four-jet states in PHP measured differentially with 121 pb^{-1} in two M_{nj} regions.
- LO ME+PS MCs do not describe the data well require an additional component.
- The magnitude of the additional component increases near the kinematic boundaries (low $M_{nj} \& x_{\gamma}^{obs}$) and with jet multiplicity
- MPIs can account for this correctly ...
- ...this has been shown by tuning JIMMY (in HERWIG) to the data ... BUT...
- ...MPIs tuned to general (albeit less sensitive) collider data fail dramatically (PYTHIA).
- the introduction of MPIs in both HERWIG & PYTHIA disrupts the description of $d\sigma/dy$.
 - the MPI models overestimate the effect at high y, which is away from any kinematic boundary.
 - therefore, $d\sigma/dy$ useful for tuning/testing MPI models (if MPIs are the missing component).
 - although possibly indicative that MPIs are not the sole cause
- the $\mathcal{O}(\alpha \alpha_s^2)$ pQCD calculation describes 3-jet data well for $M_{3j} \gtrsim 50$ GeV.
- the prediction is poorer for $M_{3j} \lesssim 50$ GeV due to higher-order processes absent in the calculation.