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Outline

Introduction, terminology

Single QCD evolution in Cracow 2005/06

CMC in a nutshell

Mapping to 4momenta, single evolution

Joining 2 single evolution into one gluonstrahlung MC (LL) for W/Z

production:

Mapping, phase space parametrization

Basic distribution for double evolution

Realizing constraint on ŝ at the 4-momenta level.

Preliminary MC results (rapidity and pT of W/Z and emitted gluons.

Summary, prospects, problems...
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Single “QCD Evolution” using Monte Carlo, various types

Evolution types and solution methods:

Evolution: Common forward, unconstrained, (ISR, FSR):

Method of solving: straightforward Markovian MC algorithm (MMC)

Evolution: Constrained (ISR):

Method: Constrained MC algorithm, non-Markovian (CMC)

Method: “Backward evolution” MC algorithm, Markovian (PYTHIA,

HERWIG,...)

Terminology:

“Markovian MC’’: Emission multiplicity generated as last variable in the MC,

“Non-Markovian MC”: Emission multiplicity generated as first variable (or 2nd).

“Constrained evolution”: Final parton type and energy fraction x in the

evolution are predefined, fixed. However, all the distribution can be identical as

in the forward evolution (Markovian style).
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Single QCD Evolution in Cracow using MC, 05/06

Single evolution programs/exercises far:

Main emphasis on CMC= Constrained Monte Carlo

The long term aim is a high quality MC description of the QCD ISR in the W/Z
production process at LHC. (DIS in the scope).

MMC programs, MarkovianMonte Carlos, are developed in parallel and used as
calibration tool for testing MMC.

MMC programs implement presently:
DGLAP LL and NLL (xchecked with QCDnum16 and APCHEB to within 0.2%),
CCFM/HERWIG LL evolution with options: αS(q(1 − z)), εIR = q0/q,
qstop = x0qmax, Quark-Gluon transitions. Mapping into 4-momenta.

CMC programs feature presently:
DGLAP LL (xchecked with MMC and QCDnum16), Q-G transitions!
CCFM/HERWIG LL evol. (xchecked with MMC), options: αS(q(1 − z)),
εIR = q0/q, qstop = x0qmax, Quark-Gluon transitions (not yet for
qstop = x0qmax). Mapping into 4-momenta.
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CMC in a nutshell

Mapping of evolution time ti → si and zi → yi, such that Jacobian

eliminates completely the (simplified) kernel zPff (z, t)

Ordering in si temporarily removed

The constraint δ(z −
∏

zi) is eliminated/fulfilled by means of the parallel

shift yi → yi − Y (for DGLAP rescaling in the mom. space, y = ln(1− z) ).

Quark-Gluon transitions by “brute force” method using general purpose

FOAM simulator.

Appropriate correcting MC weights applied at the end.

For more details see my talks in previous HERA-LHC and other places,

http://jadach.web.cern.ch/jadach/ and http://arxiv.org/abs/hep-ph/0504263
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Variable Mapping

1−ε(t)
Z

x

dzi

t
Z

t0

dti P
Θ
kk(ti, zi) = hk

ρ(ln(1−x))
Z

ρ(t0−t)

dyi

1
Z

0

dsi 1, i = 1, 2, ..., n,

zi(yi) = 1 − exp(ρ−1(yi)),

t̂i(si) = t̂0

„

t̂ + ln(1 − zi)

t̂0

«si

− ln(1 − zi).

where

ρ(v) ≡ (t̂ + v) ln(t̂ + v) − v − v ln t̂0 − t̂ ln t̂, t̂ ≡ t − tΛ = ln Q − lnΛ0.

IMPORTANT: ρ−1 is not analytical!
Inversion has to be done numerically. ρ−1 will enter the constraint function

Q

zi!

The above mapping leads to:

xDkk(t, t0, x) = e−Φk(t,t0)



δx=1+

∞
X

n=1

1

n!
hn

k

n
Y

i=1

ρ(ln(1−x))
Z

ρ(t0−t)

dyi δx=
Q

n
i=1

zi(yi)

1
Z

0

dsi

ff

.
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Linear shift: y′
i → yi = y′

i − Y

(y′
1, y

′
2, ..., y

′
n)

y’
i

y’
ny’

1

ymaxmin
y

Begin with y′
i such that one of them yn ≡ ymax

Shift y′
i → yi by Y , where Y solves constraint condition

Q

zi = x

Y is therefore complicated function of all y′
i

Sometimes the smallest y′
i is shifted OUT of the phase space, below IR the limit

ymin. Such an event gets MC weight w = 0
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Test CMC/MMC; Evolution 1GeV → 1TeV
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J = 0: Q → Q
J = 1: G → Q and any no. of gluon emissions out of Q and G,
J = 2: G → Q → G → Q, etc.
J = 3: G → Q → G → Q, etc.
J = 4: Q → G → Q → G → Q, etc. “Total” is the sum of n = 0, 1, 2, 3, 4.
Evolution in LL, with α(q(1 − z)), εIR = 1GeV/q (HERWIG/CCFM style).
This result was obtained June 2005
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Toolbox for mapping of ti and zi into phase space (4-momenta)

Emitted particle momenta in terms of lightcone ± variables and rapidities:

ki = (k+
i , k−

i , ~kTi),
~k2

Ti = k+
i k−

i , e2ηi = ξi =
k−

i

k+
i

=
~k2

Ti

sk+2
i

Many equivalent parametrization of the same “eikonal phase space element”:

d3ki

2k0
i

1

k−
i k+

i

=
dk+

i dk−
i dϕi

k+
i k−

i

=
dξidk+

i dϕi

ξik
+
i

=
dξidzidϕi

ξi(1 − zi)
=

dpTidzidϕi

pTi(1 − zi)
= . . . .

Identity connecting lightcone variabs. of the emitter zi with k+
i of the emitted particles:

n
Y

i=1

Z p+

0

0

dk+
i

k+
i

θP

n
i=1

k+

i
6p+

0

=

Z 1

0

n
Y

i=1

dzi

1 − zi

The IR boundary on kT
i (alternatively on xi−1kT

i ):

k2
Ti = k+

i k−
i = k+2

i ξi > λ2, k+
i = p+

0 (1 − zi)xi−1 >
λ√
ξi

, 1 − zi >
λ

p+
0 xi−1

√
ξi

Last not least, the choice of the evolution time variable: qi = p+
0

√
ξi,

where p0 = (p+
0 , 0, 0, 0) is the primary emitter, before the evolution starts.

We chose rapidity as the evolution time!!!! Also equal to maximum kT of the next emission.
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Sudakov plane in (rapidity,kT ) and/or (k+, k−)

Tln(k )

ξξ

k  
= p+

+

ISR, one hemishere

k =constT

ln( )ξ
λk  =T

ln(k )−+ln(k )
ln(k’  )+

*0
0

n
LAB

ik

BOOST

The phase space is visualized for single emitted particle as a green triangle on the
logarithmic plane (ln kT , ln ξ).
It can be also mapped using variables (ln k+, ln k−) on the same plot.
The boost from one to another frame along p0 corresponds to trivial horizontal parallel
shift (kT unchanged). Trivial!!!
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Master equation for single evolution/hemisphere gluonstrahlung

Master formula for ISR gluonstrahlung out of parton f with the angular ordering:

D̃f (ξ, x) = e−Φf (ξ,ξ0)δ(1 − x) +

+
∞
X

n=0

e−Φf (ξ|ξn,x)

0

B

B

@

n
Y

i=1

ξ
Z

ξi−1

dξi

ξi

p+
0

xi−1
Z

λ/
√

ξi

dk+
i

k+
i

Z

dϕi

2π

1

C

C

A

×
 

n
Y

i=1

P̃ff (ki, zi)e
−Φf (ξi|ξi−1,xi−1)

!

δx=
Q

n
i=1

zi
(0)

1 − zi =
k+

i

p+
0 − k+

1 − k+
2 . . . . − k+

i−1

=
k+

i

p+
0 xi−1

, p+
0 xi−1 = p+

0 −
i−1
X

j=0

k+
j ,

where, ξ0 = λ, kernel P̃ff (k, z) = z(1 − z)Pff (k, z, x) includes αS

Pff (k, z, x) =
αS(k)

π
Pff (ξ, z, x) =

αS(k)

π

Bff

z(1 − z)
χf (ξ, z),
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Master equation, cont.

Sudakov formfactor explicitly reads:

Φf (ξi|ξi−1, xi−1) =

ξi
Z

ξi−1

dξ′

ξ′

p+

0
xi−1
Z

λ/
√

ξ′

dk′+

k′+ P̃ff (k′, xi−1)

=

ξi
Z

ξi−1

dξ′

ξ′

1−λ/(p+

0
xi−1

√
ξi)

Z

0

dz′

1 − z′
P̃ff (z′, xi−1)

Properties: D̃f (ξ, x) obeys an evolution equation:

∂ξD̃f (ξ, x) =

Z 1

0

dz

1 − z
dxPff (ξ, z, x′)D̃f (ξ, x′)δx=zx′

The main built in property is the “unitarity”

Z 1

0
dxD̃f (ξ, x) ≡ 1,∀ξ,

a synonym of the perfect cancellations of the double and single logarithmic (collinear and
soft) singularities to infinite order.
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Single emission in a detail, single evolution

Tln(k )

ln(k )ln(k )+
−

ξξ

Φ(ξ   ,ξ  )

ξ

for k

k  
= p+

+

k =constT

ln( )ξ

Available

λk  =T

k  
= p

+

+

ISR, one hemishere

Φ(ξ   ,ξ  )

1 *0

z

*

1

k1

1−z
1

k

p0

0

=pz11p

1

2

p
0

p
1

1

n

1 0 1

Integration domains of Φf(ξ|ξ1, x) and Φf(ξ1|ξ0, x0)are the triangle and trapezoid.

D̃f (ξ, x)n=1 =

ξ
Z

ξ0

dξ1

ξ1

p+
0
Z

λ/
√

ξ1

dk+
1

k+
1

Z

dϕ1

2π
e−Φf (ξ|ξ1,x)

P̃ff (k1, z1)e−Φf (ξ1|ξ0,x0)δx=z1
,

Double Constrained Evolutions in a singleMonte Carlo for the DY-type processes – A prototype – p.14/28



Real emissions in the real CMC

Tln(k )

ln(k )ln(k )+
−

Φ(ξ   ,ξ  )

ξ

for k

k  
= p+

+

k =constT

ln( )ξ

Available

λk  =T

k  
= p

+

+

ISR, one hemishere

Φ(ξ   ,ξ  )

ξ ξ*0

z

*

1

k1

1−z
1

k

p0

0

=pz11p

1

2

p
0

p
1

1

n

1 0 1

1

In reality in the present CMC IR boundary is not kT
i > λ, but rather 1 − zi > λ

p+

0

√
ξi

.

It is depicted above, see blue line defining phase space of the next (2nd) emission.
It will be not a big problem to get kT

i > λ IR cut-off in CMC (one needs to recalculate the
formfactor).
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3 Real emissions, shrinking phase space

Tln(k )

x1

2x

3xln

ln

ln

ln(k )ln(k )+
−

k =T λ

k =constT

ξ=1
ln( )ξ

ISR, one hemishere

1

2

3

Three ISR emissions ordered in angle. Nested trapezoids indicate (shrinking) phase
space for the consecutive real emissions.
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Joining smoothly two evolutions in 2 hemispheres

T

Φ(0,1)

Ω

xln

ln

1

2x

y

k

ln

ln

lnξξ=Ξ

ξ=
1

Forbiden by s’>0

Φ(3,Ξ)
Φ(2,3)

Φ(1,2)

ln x3
ln x3

ln y

1
2

3

Having CMC for single evolution with the strict maximum rapidity phase space limit (as
we do), we may use it twice and join smoothly (without any gap or overlap) the phase
space of the emitted gluons, see picture above.
The rapidity of the boundary (blue) line should coincide with rapidity of the W/Z boson,
but its position is unimportant, if we are able to implement a correct soft/eikonal limit (as
we do).
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Joining smoothly two evolutions in 2 hemispheres

T

Φ(0,1)

Ω

xln

ln

1

2x

y

k

ln

ln

lnξξ=Ξ

ξ=
1

Forbiden by s’>0

Φ(3,Ξ)
Φ(2,3)

Φ(1,2)

ln x3
ln x3

ln y

1
2

3

The above scenario is already implemented in the prototype Monte Carlo.
There is however one IMPORTANT PROBLEM to be solved:
In the existing CMC for single evolution we put constraint on the

P

F p+
i of all gluons in

the forward hemisphere and separately on the
P

B p−i in the backward one.
This is not what we need! We have to put the constraint on the effective mass of the W/Z
boson which involves also

P

F p−i ,
P

B p+
i and total transverse momenta.

Additional requirement: Total control on the overall normalization.
Can we do it? Yes! We did it, it works! The method is explained in the following.
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Rescaling momenta, while keeping track of the normalization

The initial integral with the constraint:

I =

Z

dxdx0F dx0BD(p0,x0F )D(p0,x0B)dρ(kiF , kiB)sδ
`

sx − (p0F + p0B − KF − KB)2
´

where KF =
P

F kiF and KB =
P

B kiB are total momenta of emitted gluons in the
Forw./Backward hemispheres.
p0F = x0F phF , p0B = x0BphB are 4-mom. of the primordial partons at low scale p0.
Momenta kiF,B are the true phase space variables.
Keeping x, x0F , x0B fixed (external integration), consider the constrained subintegral:

I′c(x, x0F , x0B) =

Z

sδ
`

sx − (p0F + p0B − KF − KB)2
´

dρ(kiF , kiB)

Also introduce explicitly lightcone variables separately for F and B groups of the
particles:

I′c =

Z

dK+
F δ(K+

F −
X

i∈F

k+
iF )

Z

dK−
B δ(K−

B −
X

i∈B

k−
iB)

sδ
`

sx − (p0F + p0B − KF − KB)2
´

dρ(kiF , kiB)
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Simplified constraint

Existing CMC is able to constrain on plus-variables in Forward hemispher and on
minus-variables in Backward hemisphere.
Rewrite/simplify our basic constraint keeping this in mind:

s′ = sx → 2p0F · p0B − 2p0F · KB − 2p0B · KF + 2KF · KB

→ 2p0
0F p0

0B + 2p0
0F K−

B + 2p0
0BK+

F + 2K+
F · K−

B

= 2p0
0F p0

0B(1 − (1 − ZB) − (1 − ZF ) + (1 − ZB)(1 − ZF ))

= 2p0
0F p0

0BZF ZB = s(x0F x0B)ZF ZB ,

where we defined K−
B = p0

0B(1 − ZB) and K+
F = p0

0F (1 − ZF ) conventionally.
Next we introduce new δ with thesimplified constraint, using auxiliary variable Y :

Ic =

Z

dY

Z

dK+
F δ(K+

F −
X

i∈F

k+
iF )

Z

dK−
B δ(K−

B −
X

i∈B

k−
iB)

δ(sx − 2p0
0F p0

0B + 2p0
0F K−

B Y −1 + 2p0
0B · K+

F Y −1 − 2K+
F · K−

B Y −2)

Y −1[2p0
0F K−

B Y −1 + 2p0
0BK+

F Y −1 − 2K+
F · K−

B 2Y −2]

sδ
`

sx − (p0F + p0B − KF − KB)2
´

dρ(piF , piB)
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Trading true constraint for simplified one

Rescale all emitted momenta: kiF = Y k̂iF and kiB = Y k̂iB , KF = Y K̂F and
KB = Y K̂B . Assume dρ(kiF , kiB) = dρ(k̂iF , k̂iB). It is a good (eikonal)
approximation. If not true, then extra MC weight will correct for that.

Ic =

Z

dY

Z

dK̂+
F δ(K̂+

F −
X

i∈F

k̂+
iF )

Z

dK̂−
B δ(K̂−

B −
X

i∈B

k̂−
iB)

δ(sx − 2p0
0F p0

0B + 2p0
0F K̂−

B + 2p0
0BK̂+

F − 2K̂+
F · K̂−

B )

Y −1[2p0
0F K̂−

B + 2p0
0BK̂+

F − 4K̂+
F · K̂−

B ]

sδ
“

sx − (p0F + p0B − Y K̂F − Y K̂B)2
”

dρ(k̂iF , k̂iB)

Y is now “transferred” to old basic constraint, which is next eliminated by Y -integration:

Ic =

Z

dK̂+
F δ(K̂+

F −
X

i∈F

k̂+
iF )

Z

dK̂−
B δ(K̂−

B −
X

i∈B

k̂−
iB)

δ(sx − 2p0
0F p0

0B + 2p0
0F K̂−

B + 2p0
0BK̂+

F − 2K̂+
F · K̂−

B )

Y −1
0 [2p0

0F K̂−
B + 2p0

0BK̂+
F − 4K̂+

F · K̂−
B ]sJ(Y0)

−1dρ(k̂iF , k̂iB),

where Y0 is solution of the 2nd order equation sx = (p0F + p0B − Y K̂F − Y K̂B)2 and
J(Y0) = 2(p0F + p0B − Y0K̂F − Y0K̂B) · (K̂F + K̂B) is important Jacobian factor.
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MC distributions and weights

Defining K+
F,B = p0

0F,B(1 − ZF,B) and s0 = 2p0
0F p0

0B = sx0F x0B , we continue
“business as usual” in the two “weakly coupled” hemispheres:

Ic =

Z

dZF δ(1 − ẐF −
X

x+
iF )dρ(k̂iF )

Z

dZBδ(1 − ẐB −
X

x−
iB)dρ(k̂iB)

sδ(sx − s0ẐF ẐB)Y −1
0 N(ZF , ZB),

where all Jacobians are combined into single factor N(ZF , ZB).
For the MC purpose it is useful to know its approximate form (for the weight stabilization):

N(ZF , ZB) =
ẐF + ẐB − 2ẐF ẐB

[(ẐF − ẐB)2 + 4(1 − ẐF )(1 − ẐF )ẐF ẐB ]1/2

The above is treated by the Foam and the correcting MC weight includes only

WN =
s1[(ẐF − ẐB)2 + 4(1 − ẐF )(1 − ẐF )ẐF ẐB ]1/2

J(Y0, K̂F , K̂B)
,

which turns out to be friendly, strongly peaked at 1.
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MC distributions and weights, numerical results

Y
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The above plots show the distribution of the rescaling factor Y (left) and of the
component weight WN (right). The total weight is on the next slide.
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MC distributions and weights, numerical results
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The distribution of the total MC weight looks rather good. The tail of the high weights
looks insignificant. It will be examined anyway.
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Full coverage of the phase space (emitted gluons)

Full coverage of the rapidity-pT space of emitted gluons, Forward hemisphere

Full coverage of the rapidity-pT space, Backward hemisphere

Perfect matching of 2 hemispheres, no overlap, no gaps,.
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EW boson mass and rapitity distributions
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The previous examples were for Z’ boson of mass 1TeV and width 100GeV.
Here we show mass and rapidity distribution of the EW boson (mass 100GeV). Matrix
element is maximally simplified (only Breit-Wigner).
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EW boson transverse momentum and rapitity distributions
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Transverse momentum and rapidity distribution of the EW boson (mass 100GeV). Matrix
element is maximally simplified (only Breit-Wigner).
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Summary and outlook

It was demonstrated that joining two single evolutions into one Initial State

radiation Monte Carlo with the constraint on the true W/Z boson mass is

possible, while keeping perfect control on the overall normalization.

Immediate plans:

More numerical tests against MMCF⊗MMCB

Inclusion of the Quark-Gluon transitions

Constructing variant with IR cut kT
I > λ and αS(kT )

Other plans:

Constructing variant of the same kind of the MC for DIS, fitting F2

Inclusion of NLO into hard process (coeff. funct.)

Inclusion of NLO into MC evolution at the 4-momenta level.
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