NEW RESULTS FROM JET PHYSICS AT HERA

Thomas Schörner-Sadenius Hamburg University

2nd HERA-LHC Workshop June 2006

OVERVIEW

• Hard jets at HERA

New jet results from HERA

- ZEUS inclusive jets at Q² and α_s (... and the positive effects on PDFs)
- H1 inclusive jets at high Q² and $\alpha_{\rm s}$
- ZEUS dijets at high Q² (and the PDFs)
- H1 multijets at high Q² and $\alpha_{\rm s}$
- H1 dijets in photoproduction
- ZEUS multijets in photoproduction (not shown here, see talk in this workshop by T. Namsoo)
- Summary on α_{s} from jets at HERA
- (HERA) jet physicists wish-list

HARD JETS AT HERA "why, what and how" ...

"HERA provides a unique laboratory for the study of the hadronic final state"

Jet production cross section:

$$\boldsymbol{\sigma} = \sum_{m=1}^{2} \boldsymbol{\alpha}_{s}^{m}(\boldsymbol{\mu}_{r}) \sum_{a=q,\overline{q},g} f_{a}(\boldsymbol{\eta},\boldsymbol{\mu}_{f}) \otimes \hat{\boldsymbol{\sigma}}(\boldsymbol{x}_{Bj}/\boldsymbol{\eta},\boldsymbol{\mu}_{r},\boldsymbol{\mu}_{f})$$

Series expansion in powers of $\alpha_{\rm s}$

 f_a : parton a density (long distance, determined from experiment) σ : sub-process cross section (short distance, calculable in pQCD)

Study of jets in the hadronic final state allows:

- stringent tests of our understanding of QCD (pQCD, factorisation, PDF universality)
- extraction of QCD parameters \rightarrow fit data with NLO QCD \Rightarrow extract α_{s}
- constraints on proton (and photon) parton distributions
- highlight areas that require further theoretical input/understanding, ...

Tools:

- excellent understanding of detector (jet-energy-scale known to 1-3%)
- jet algorithm: k_T clustering (infra-red/collinear safe, small corrections,..)
- selection criteria: jets at high- E_T/Q^2 , asymmetric cuts,...
- observables proportional to α_s (e.g. Breit frame in DIS, ratios, ...)
- NLO QCD calculations (e.g. DISENT, NLOJET++)
 - \cdot scale $\mu_{r,f}$ = Q, E_T (or some combination), correct to hadron level with PS models, up-to-date PDFs

REMEMBER: importance of jet physics for LHC (background to all searches, understanding of detector/calibration/tools etc.)

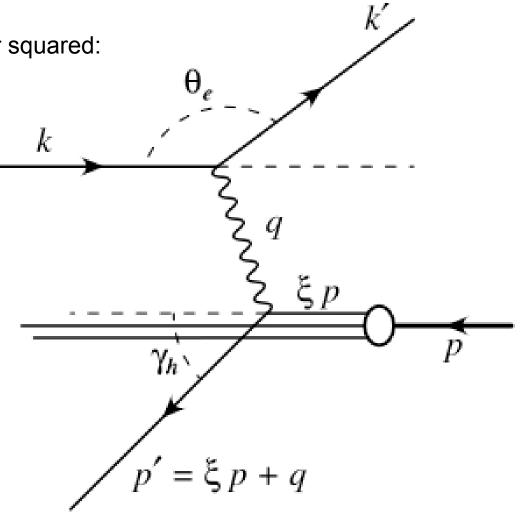
HERA-LHC, CERN, June 2006

TSS: Jets at HERA

many measurements dominated by theory uncertainties: scale, hadronisation, α_s , PDFs

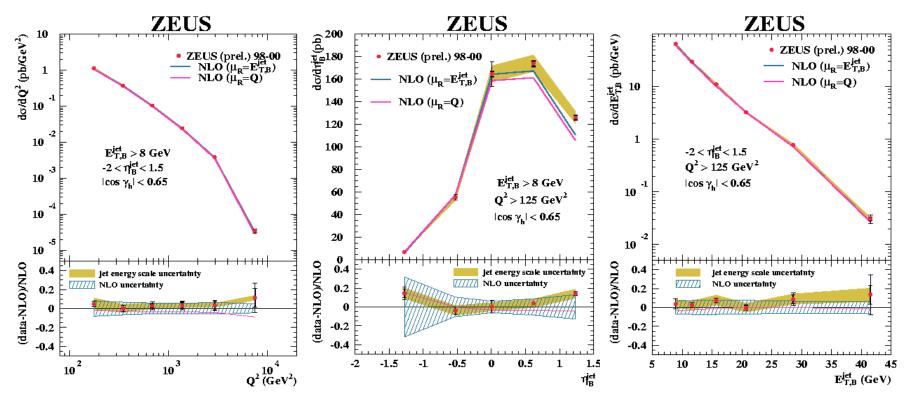
HERA KINEMATICS


• Negative four-momentum transfer squared:


 $Q^{2} = -q^{2} = -(k - k')^{2}$

• Bjorken scaling variable:

• Inelasticity:



Only need two out of three variables since $Q^2 = sxy$

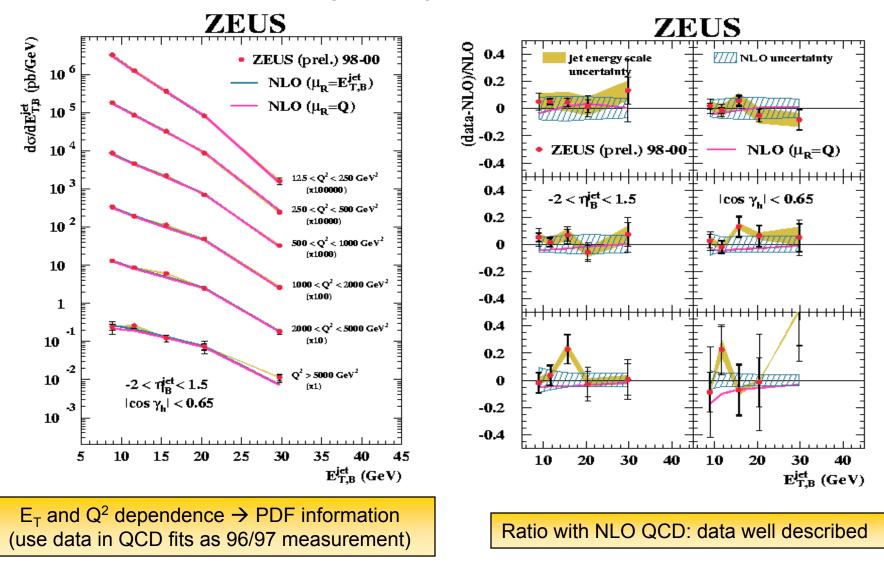
ZEUS INCLUSIVE JETS AT HIGH Q²

`Simple' measurement – take PDFs/ α_s as given

- Tests: understanding of pQCD, factorisation, PDF universality,...
- Data: 82 pb⁻¹ e⁺p data from 98-00
- Aims: extraction of strong coupling, use data in QCD fits for PDF constraints

- Data well described by NLO theory (DISENT, CTEQ6M)
- Uncertainties mostly dominated by scale variation effect $(1/2\mu_{r,f} < \mu_{r,f} < 2\mu_{r,f})$

Phase Space:

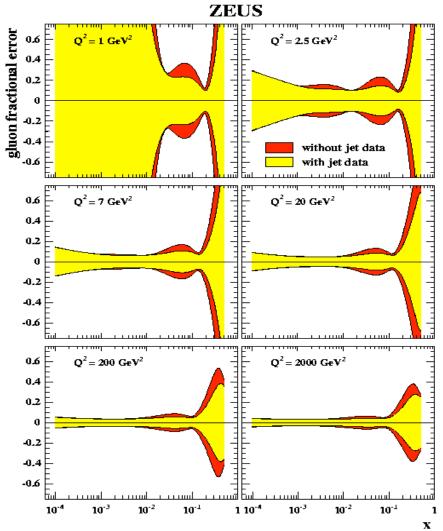

 $Q^2 > 125 \text{ GeV}^2$

 $|\cos \gamma_{\rm b}| < 0.65$

 $E_T(Breit) > 8 \text{ GeV}$ -2 < $\eta(Breit) < 1.5$

ZEUS INCLUSIVE JETS

Also double-differentially, comparison to NLO


REMINDER: PDFs VIA INCL. JETS

Aim: reduction of gluon error via BGF process

- Structure functions alone leave large uncertainty of PDFs (especially gluon) at high momentum fractions
- · Jet data provide access to this regime
- (Technically demanding) inclusion of jet data in QCD fits leads to significant improvement of gluon uncertainty at medium and high momentum fractions

· Data sets (both 96-97 ZEUS data):

- DIS inclusive jets (predecessor to this analysis!)
- Dijets in photoproduction
- Future plans: include new high-Q²
 98-00 ZEUS inclusive and dijets (see later)
- Programs like FASTNLO provide systematic way of using jet data in fits

α_{s} FROM ZEUS INCLUSIVE JETS

in bins of $E_{\! T}$ and combined

Single differential cross sections in Q^2 and E_T (Breit) used to extract α_s in each cross section bin

PROCEDURE:

 $lpha_{s}^{c}(M_{Z})$

0.14

0.12

0.1

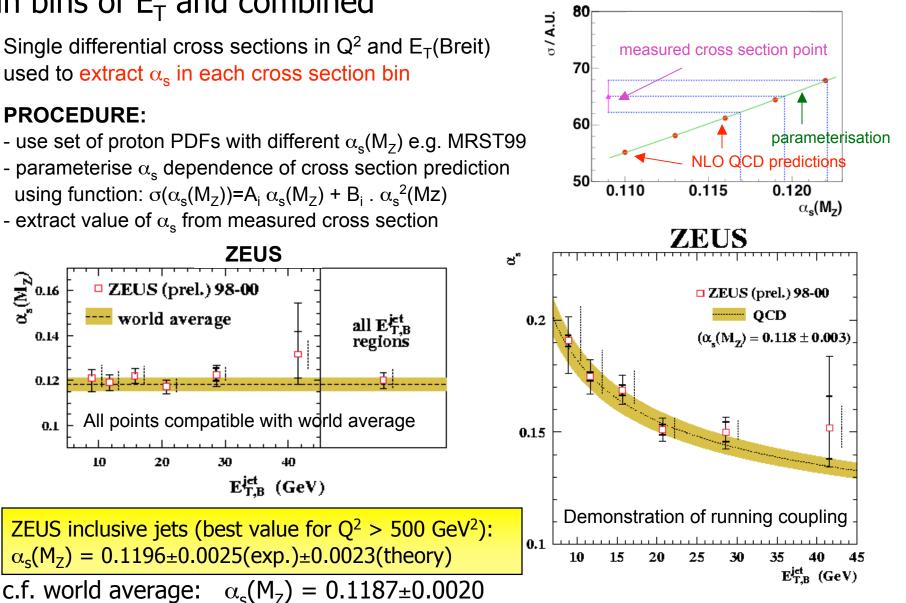
10

- use set of proton PDFs with different $\alpha_s(M_7)$ e.g. MRST99
- parameterise α_s dependence of cross section prediction using function: $\sigma(\alpha_s(M_Z))=A_i \alpha_s(M_Z) + B_i \cdot \alpha_s^2(M_Z)$

ZEUS

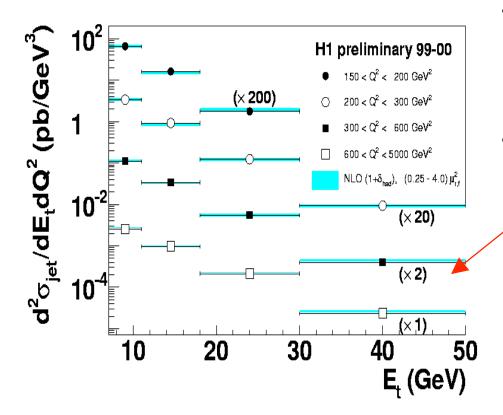
- extract value of α_s from measured cross section

30


40

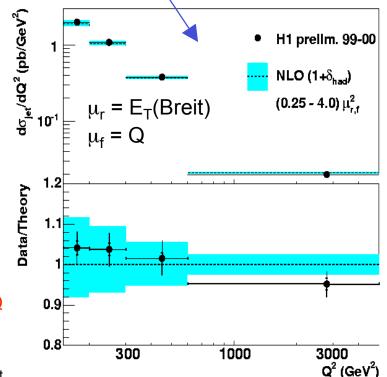
E^{jet}_{T,B} (GeV)

ZEUS (prel.) 98-00


🕶 world average

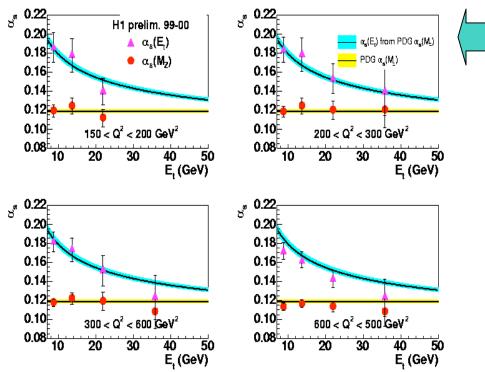
20

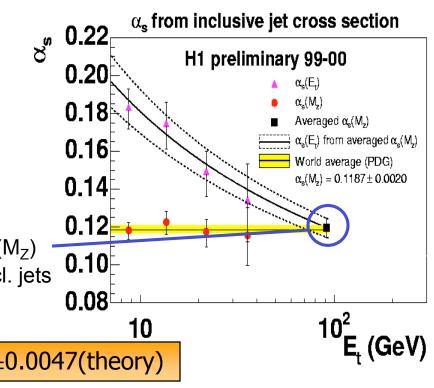
H1 INCLUSIVE JETS AT HIGH Q²


As function of $E_{\rm T}$ in bins of Q^2

- Very good agreement of data and NLO QCD (NLOJET++, CTEQ5M1) within all uncerts.
- Uncertainty dominated by scale variation effect
 N.B. μ_r=E_T(Breit) (shown) gives smaller uncert. than μ_r=Q

- Data: 61.3 pb⁻¹ from 99-00 e⁺p data
- Phase Space (similar to ZEUS analysis):
 - 150 < Q² < 5000 GeV²
 - 0.2 < y < 0.6
 - E_T(Breit) > 7 GeV
 - -1.0 < η_{Lab} < 2.5
- Cross sections:




TSS: Jets at

H1 INCLUSIVE JETS

extraction of strong coupling

 Coupling α_s(M_Z) [also α_s(<E_T>)] extracted from double differential cross section in E_T(Breit) and Q² (15 data points) and single differential cross section in E_T(Breit)
 all single measurements consistent

- 15 double differential points used for average $\alpha_{\text{s}}(\text{M}_{\text{Z}})$
- Result consistent with world average + ZEUS incl. jets
- Theory error dominates (effect of higher orders)

H1 inclusive: $\alpha_s(M_Z) = 0.1197 \pm 0.0016(exp) \pm 0.0047(theory)$

c.f. ZEUS inclusive: $\alpha_s(M_Z) = 0.1196 \pm 0.0025(exp) \pm 0.0023(theory)$

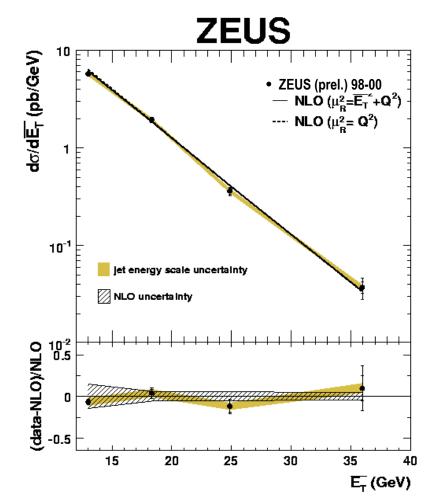
ZEUS DIJETS AT HIGH Q²

Motivation

IDEA:

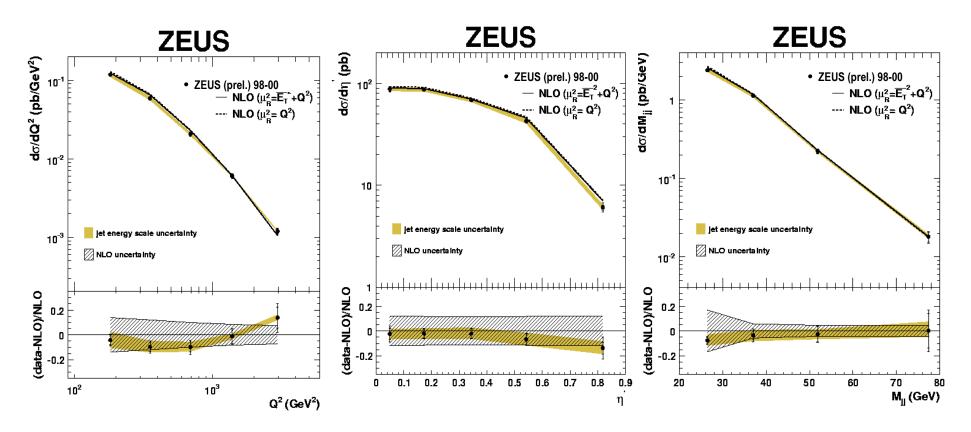
- PDFs characterized by variables Q² and ξ (proton momentum fraction)
- In dijet events:

$$\boldsymbol{\xi} = \boldsymbol{x}_{Bj} \cdot \left(1 + \frac{\boldsymbol{M}_{jj}^2}{\boldsymbol{Q}^2} \right)$$


→ use dijets at high Q² from large 98-00 data sample (82 pb⁻¹) to obtain theoretically safe and precise information about PDFs (gluon at high ξ !)

ANALYSIS:

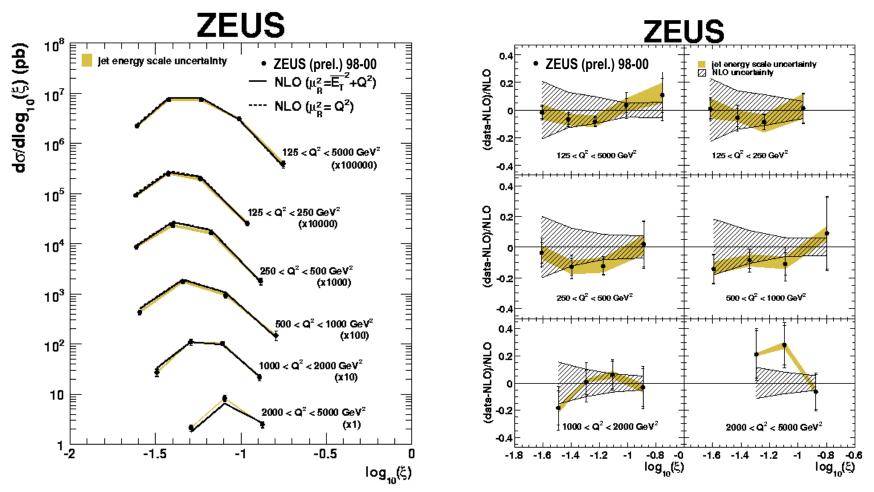
- Phase Space:
 - $-125 < Q_{DA}^2 < 5000 \text{ GeV}^2$
 - $-|\cos\gamma_{had}| < 0.65$
- Jet Selection
 - $-2.0 < \eta_{Breit} < 1.5$ $-E_{T,1(2)} > 12$ (8) GeV
- Compare to NLO QCD (DISENT, CTEQ6)



→ well described by NLO QCD !

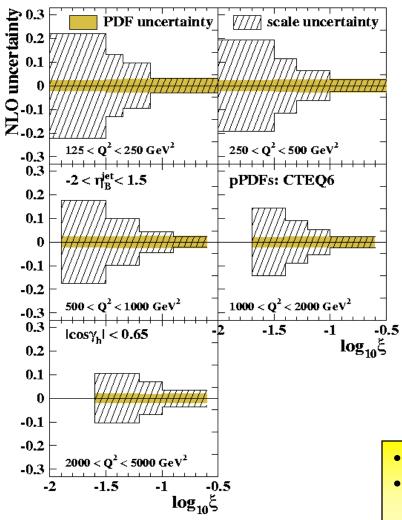
ZEUS DIJETS AT HIGH Q²

More single-differential results

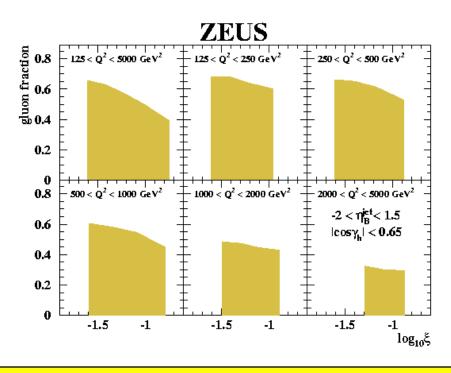


- Data nicely described by NLO theory corrected to hadron level
- Theoretical uncertainties almost everywhere larger than experimental uncertainties

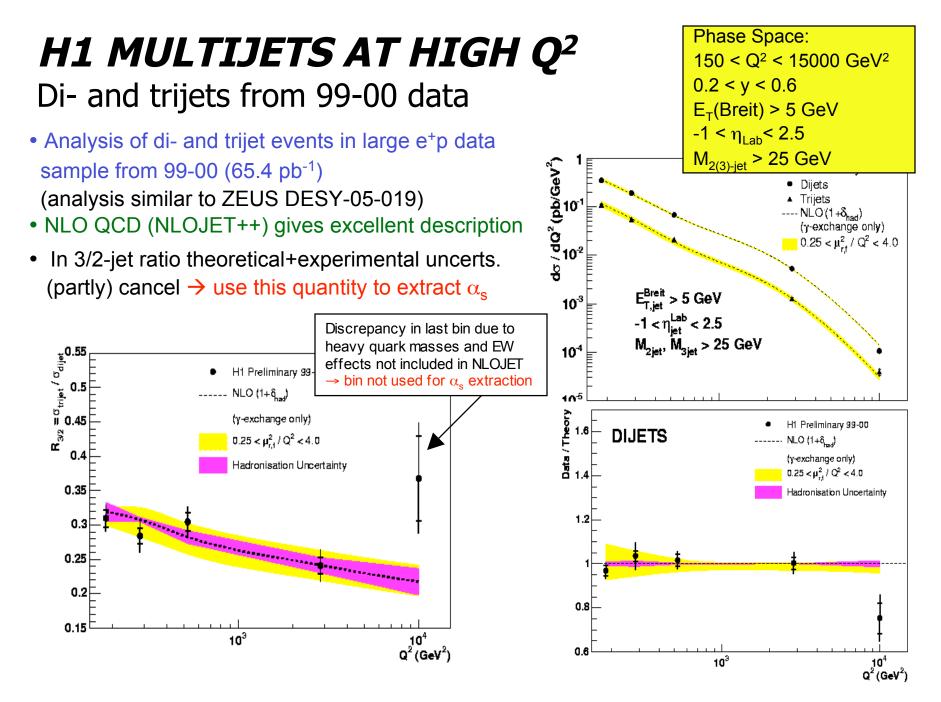
 → dominating contribution from scale variation to estimate higher-order effects

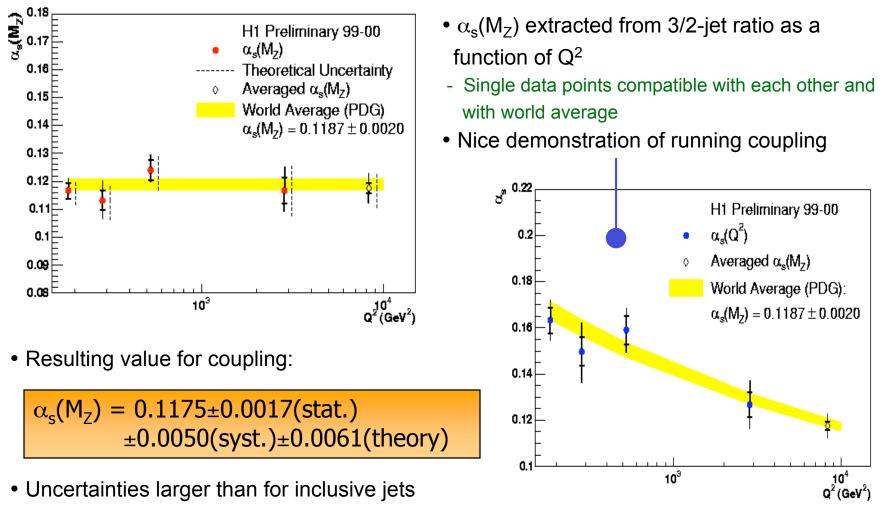

ZEUS DIJETS AT HIGH Q²

double-differential measurement: $log(\xi)$ in Q^2 bins



- Also double-differential data well described by NLO QCD
- Still large theoretical uncertainties; at high Q², statistics getting low

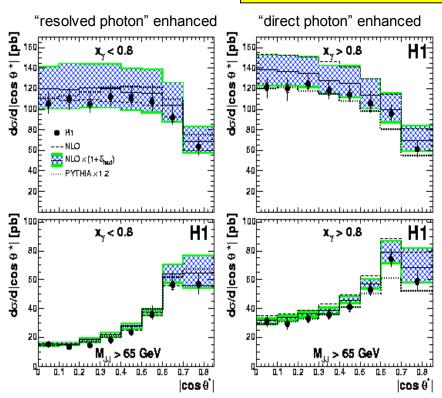

ZEUS DIJETS AND POTENTIAL FOR PDFs theory uncertainty and gluon fraction


scale uncertainty 5-20%, large at small ξ
 PDF uncertainty ≤3%, significant at high ξ

gluon fraction decreases with increasing ξ and Q²
still substantial gluon contribution → use in NLO QCD fits of PDFs.

H1 MULTIJETS AT HIGH Q² Strong coupling from di- and tri-jets

• Systematics and theory uncertainties closer in magnitude than for (H1) inclusive jets

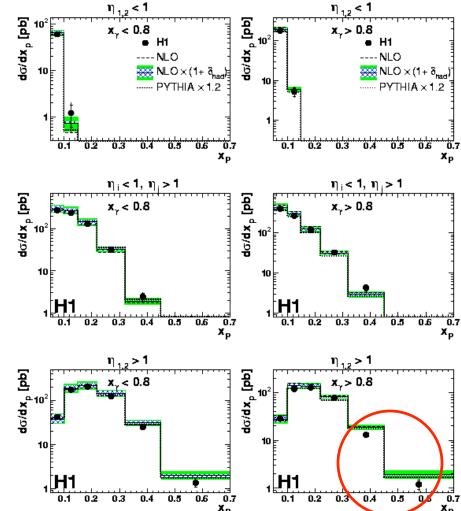

H1 DIJETS IN PHOTOPRODUCTION precise multi-differential test of QCD

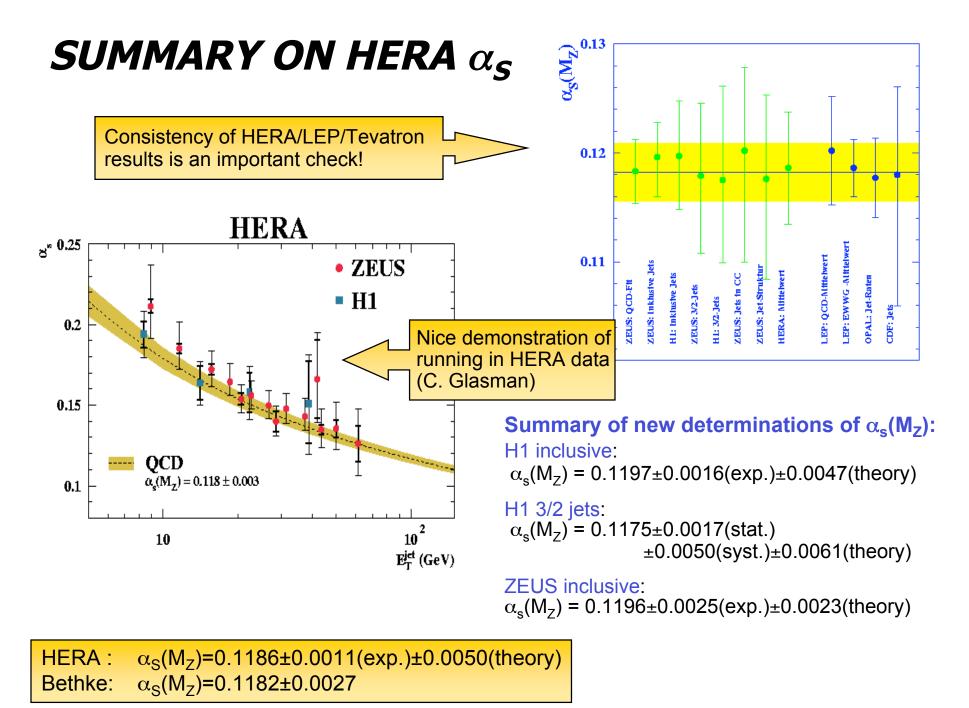
 $\left|\cos\mathbf{\theta}^*\right| = \left|\tan(\mathbf{\eta}_1 - \mathbf{\eta}_1)/2\right|$

- Data set of 66.6 pb⁻¹ e⁺p from 99-00; large statistics allow differential measurement (14k events)
- Phase space (high-E_T jets, perturbatively "safe"):
 - Q² < 1 GeV²; 0.1 < y < 0.9
 - $E_T^{jet1,2}$ > 25 ,15 GeV; 0.5 < η^{jet} < 2.75
- Data might be used to exploit sensitivity to photon and proton PDFs
 - direct and resolved regimes via $x_{\!\scriptscriptstyle \rm y}$
 - proton momentum fractions \boldsymbol{x}_{p} up to 0.7
 - disentangling gluon- and quark-initiated processes (Boson-Gluon-Fusion at low x_p)

$$x_{\gamma} = \frac{1}{2yE_{e}} \left(E_{T,1}e^{-\eta_{1}} + E_{T,2}e^{-\eta_{2}} \right)$$
$$x_{p} = \frac{1}{2E_{p}} \left(E_{T,1}e^{\eta_{1}} + E_{T,2}e^{\eta_{2}} \right)$$

Overall excellent demonstration of the power of pQCD

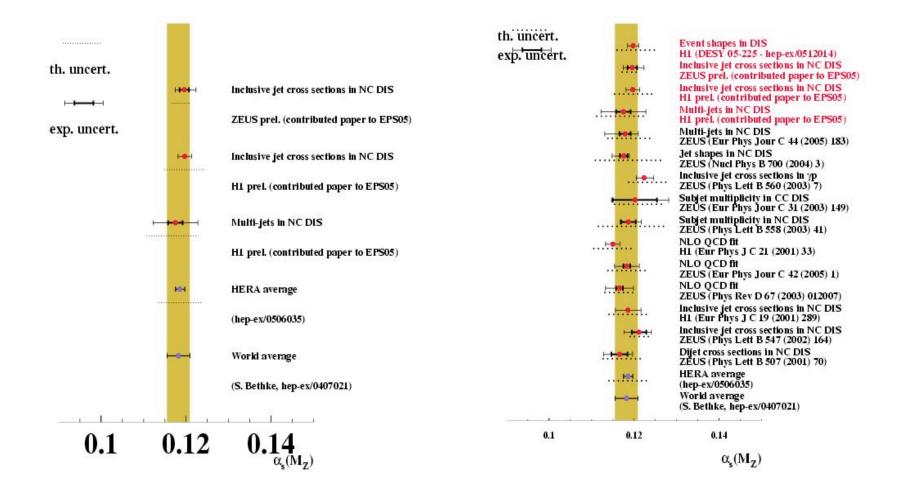



- Measurement in cosθ* gives access to dynamics of hard interaction → tests of pQCD
- High-E_T cuts suppress cross section at high $\cos\theta^*$, for high M_{ii} is closer to ME expectations
- Faster rise in resolved than in direct

```
\rightarrow gluon/quark propagator spin
```

H1 DIJETS IN PHOTOPRODUCTION exploiting the dijet event topology

- Jet pseudorapidities sensitive to momentum distributions of incoming partons
 - → measure x_p for both jets "backwards", both jets "forward" and for one jet forward and the other backward, separately for resolved and direct
 - \rightarrow learn about PDFs/dynamics?
- Data are well described in all phase space regions except for highest x_p in the directenhanced sample with both jets forward:
 - insufficient parton dynamics in DGLAPbased NLO theory?
 - underestimated PDF uncertainty at high momentum fractions?
- Data might be very useful in global fits for the proton parton densities
 - \rightarrow how large is the sensitivity to the γ PDFs?


(HERA) JET PHYSICIST'S WISHLIST

or "conclusion and outlook"

achievements:	 excellent understanding of pQCD demonstrated concepts of factorisation/PDF universality work well very precise extraction of QCD parameters: HERA average: α_S(M_Z)=0.1186±0.0011(exp.)±0.0050(theory) clear reduction of gluon uncertainty at medium-to-high-x via use of jet data
experimental wishes:	not much to wish for really → we have large samples (in most fields statistics not an issue) → experimental uncertainties are well under control (luminosity, energy scale,) BUT: some questions would profit from more data and multi-differential analyses (parton dynamics) - also (wo)man-power will be an issue → people are leaving HERA!
theoretical wishes:	 some wishes here: often scale uncertainty dominating source of uncertainty (low Q², E_T, M_{JJ}) higher orders (NNLO) would really help (coupling, PDFs) but also an important question - which is the "true" scale (BML,)? hadronisation corrections of NLO theory done with LO MC programs want NLO+PS for better consistency + as approach to NNLO MC@NLO? (standard answer: e+e- easy, pp important,) but remember HERA can provide important input to LHC! DGLAP-BFKL question: easy-to-use BFKL program would help us a lot

Backups

α_s summary

