NEW RESULTS FROM JET PHYSICS AT HERA

Thomas Schörner-Sadenius Hamburg University

2nd HERA-LHC Workshop June 2006

OVERVIEW

- Hard jets at HERA
- New jet results from HERA
 - ZEUS inclusive jets at Q² and α_s (... and the positive effects on PDFs)
 - H1 inclusive jets at high Q^2 and α_s
 - ZEUS dijets at high Q² (and the PDFs)
 - H1 multijets at high Q^2 and α_s
 - H1 dijets in photoproduction
 - ZEUS multijets in photoproduction (not shown here, see talk in this workshop by T. Namsoo)
- Summary on α_s from jets at HERA
- (HERA) jet physicists wish-list

HARD JETS AT HERA "why, what and how" ...

"HERA provides a unique laboratory for the study of the hadronic final state"

Jet production cross section:

$$\boldsymbol{\sigma} = \sum_{m=1}^{2} \boldsymbol{\alpha}_{s}^{m}(\boldsymbol{\mu}_{r}) \sum_{a=q,\overline{q},g} f_{a}(\boldsymbol{\eta},\boldsymbol{\mu}_{f}) \otimes \hat{\boldsymbol{\sigma}}(\boldsymbol{x}_{Bj}/\boldsymbol{\eta},\boldsymbol{\mu}_{r},\boldsymbol{\mu}_{f})$$

Series expansion in powers of α_s

f_a: parton a density (long distance, determined from experiment)

σ: sub-process cross section (short distance, calculable in pQCD)

Study of jets in the hadronic final state allows:

- stringent tests of our understanding of QCD (pQCD, factorisation, PDF universality)
- ullet extraction of QCD parameters o fit data with NLO QCD \Rightarrow extract $lpha_{
 m s}$
- constraints on proton (and photon) parton distributions
- highlight areas that require further theoretical input/understanding, ...

Tools:

- excellent understanding of detector (jet-energy-scale known to 1-3%)
- jet algorithm: k_T clustering (infra-red/collinear safe, small corrections,..)
- selection criteria: jets at high-E_T/Q², asymmetric cuts,...
- observables proportional to α_s (e.g. Breit frame in DIS, ratios, ...)
- NLO QCD calculations (e.g. DISENT, NLOJET++)

•scale $\mu_{r,f} = Q$, E_T (or some combination), correct to hadron level with PS models, up-to-date PDFs

many measurements dominated by theory uncertainties: scale, hadronisation, α_s , PDFs

REMEMBER: importance of jet physics for LHC (background to all searches, understanding of detector/calibration/tools etc.)

HERA KINEMATICS

• Negative four-momentum transfer squared:

$$Q^2 = -q^2 = -(k-k')^2$$

• Bjorken scaling variable:

$$x \equiv \frac{Q^2}{2p.q}$$

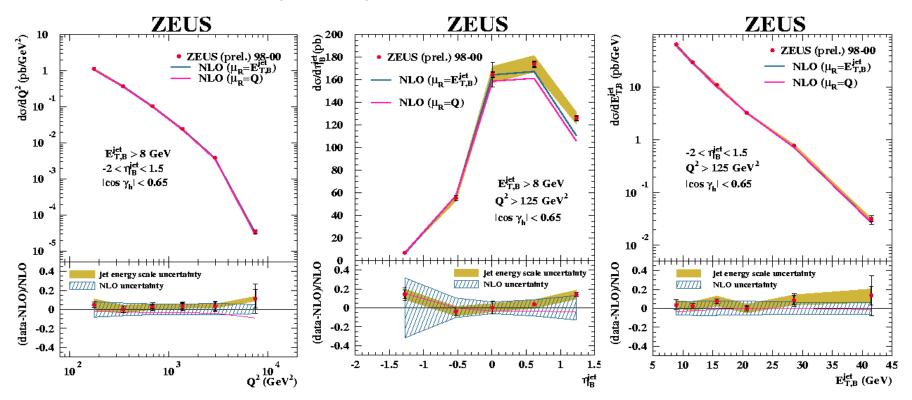
QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

• Inelasticity:

$$y \equiv \frac{p.q}{p.k}$$

Only need two out of three variables since $Q^2 = sxy$

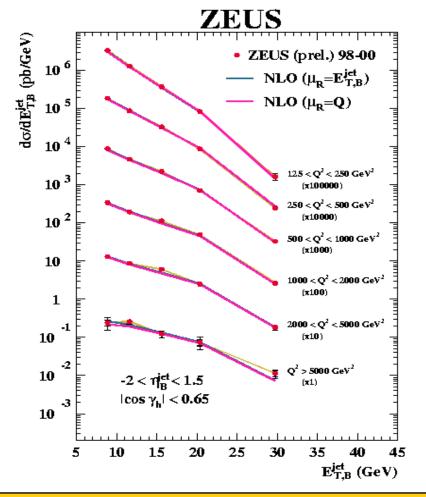
ZEUS INCLUSIVE JETS AT HIGH Q²

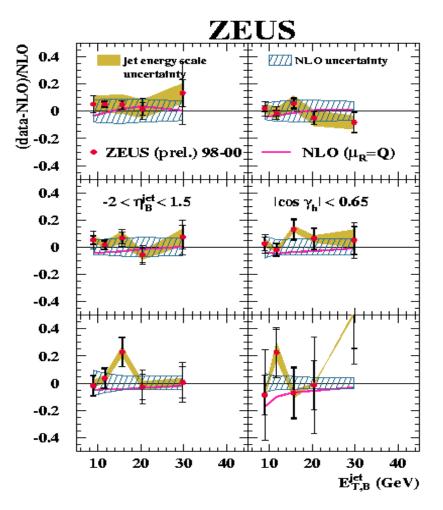

`Simple' measurement – take PDFs/ α_{S} as given

 $Q^2 > 125 \text{ GeV}^2$ $E_T(\text{Breit}) > 8 \text{ GeV}$ $-2 < \eta(\text{Breit}) < 1.5$

Phase Space:

 $|\cos \gamma_b| < 0.65$

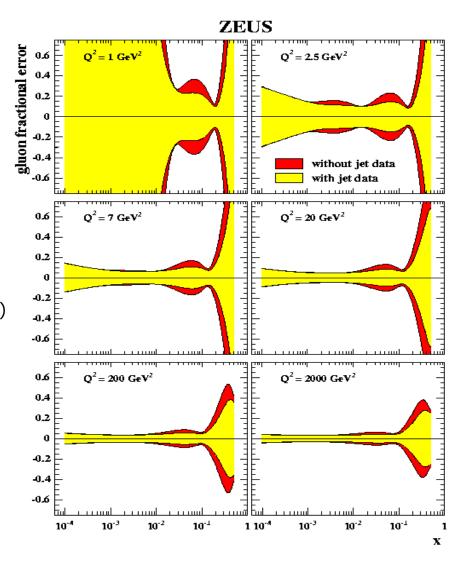

- Tests: understanding of pQCD, factorisation, PDF universality,...
- **Data**: 82 pb⁻¹ e⁺p data from 98-00
- Aims: extraction of strong coupling, use data in QCD fits for PDF constraints


- Data well described by NLO theory (DISENT, CTEQ6M)
- Uncertainties mostly dominated by scale variation effect (1/2 $\mu_{r,f}$ < $\mu_{r,f}$ < 2 $\mu_{r,f}$)

ZEUS INCLUSIVE JETS

Also double-differentially, comparison to NLO

E_T and Q² dependence → PDF information (use data in QCD fits as 96/97 measurement)

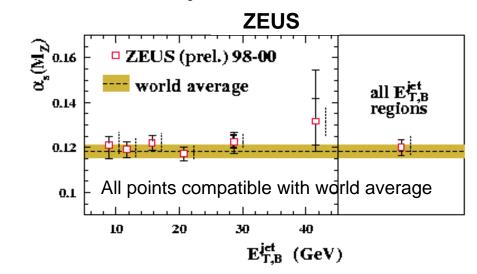


Ratio with NLO QCD: data well described

REMINDER: PDFs VIA INCL. JETS

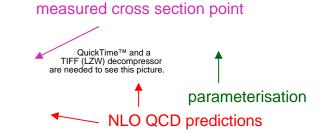
Aim: reduction of gluon error via BGF process

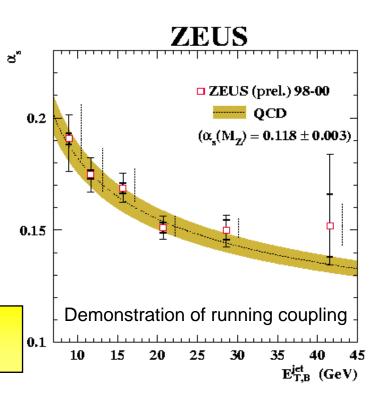
- •Structure functions alone leave large uncertainty of PDFs (especially gluon) at high momentum fractions
- •Jet data provide access to this regime
- (Technically demanding) inclusion of jet data in QCD fits leads to significant improvement of gluon uncertainty at medium and high momentum fractions
- •Data sets (both 96-97 ZEUS data):
 - DIS inclusive jets (predecessor to this analysis!)
 - Dijets in photoproduction
- •Future plans: include new high-Q² 98-00 ZEUS inclusive and dijets (see later)
- Programs like FASTNLO provide systematic way of using jet data in fits


α_{S} FROM ZEUS INCLUSIVE JETS

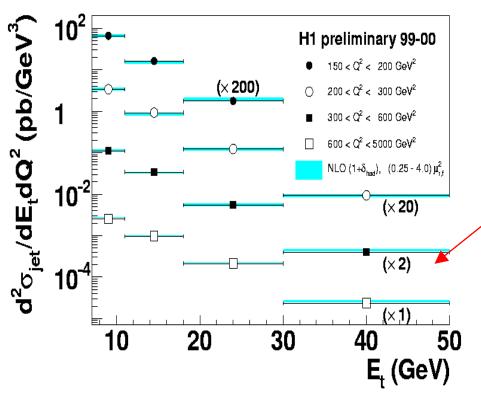
in bins of $E_{\scriptscriptstyle T}$ and combined

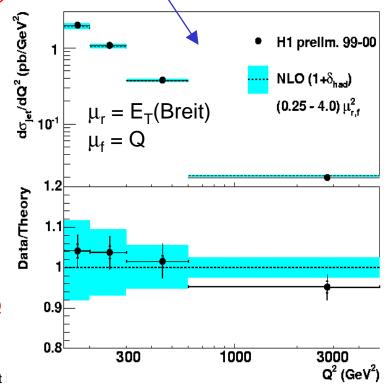
Single differential cross sections in Q^2 and $E_T(Breit)$ used to extract α_s in each cross section bin


PROCEDURE:

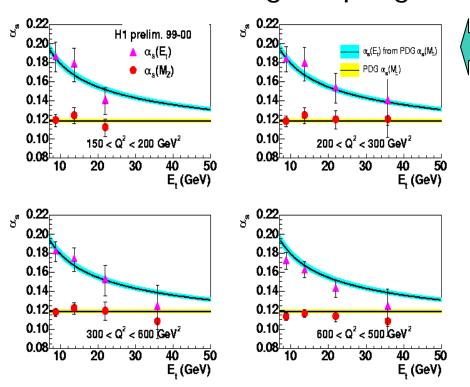

- use set of proton PDFs with different $\alpha_s(M_z)$ e.g. MRST99
- parameterise α_s dependence of cross section prediction using function: $\sigma(\alpha_s(M_Z))=A_i \alpha_s(M_Z) + B_i \cdot \alpha_s^2(M_Z)$
- extract value of $\alpha_{\mbox{\tiny S}}$ from measured cross section

ZEUS inclusive jets (best value for $Q^2 > 500 \text{ GeV}^2$): $\alpha_s(M_Z) = 0.1196 \pm 0.0025 \text{(exp.)} \pm 0.0023 \text{(theory)}$


c.f. world average: $\alpha_s(M_7) = 0.1187 \pm 0.0020$

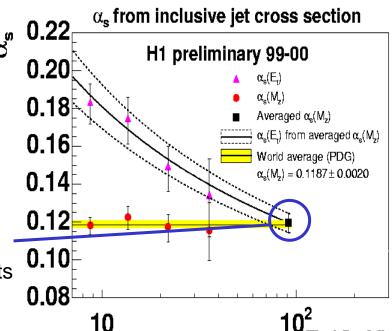

H1 INCLUSIVE JETS AT HIGH Q2

As function of E_T in bins of Q^2


- Very good agreement of data and NLO QCD (NLOJET++, CTEQ5M1) within all uncerts.
- Uncertainty dominated by scale variation effect
 N.B. μ_r=E_T(Breit) (shown) gives smaller uncert. than μ_r=Q

- Data: 61.3 pb⁻¹ from 99-00 e⁺p data
- Phase Space (similar to ZEUS analysis):
 - $150 < Q^2 < 5000 \text{ GeV}^2$
 - -0.2 < y < 0.6
 - E_T(Breit) > 7 GeV
 - $-1.0 < \eta_{Lab} < 2.5$
- Cross sections:
 - Single differential in E_T(Breit) and Q²
 - Double differential in E_T(Breit) and Q²

H1 INCLUSIVE JETS


extraction of strong coupling

- 15 double differential points used for average $\alpha_s(M_Z)$
- Result consistent with world average + ZEUS incl. jets
- Theory error dominates (effect of higher orders)

Coupling α_s(M_Z) [also α_s(<E_T>)]
 extracted from double differential
 cross section in E_T(Breit) and Q²
 (15 data points) and single
 differential cross section in E_T(Breit)

- all single measurements consistent

H1 inclusive: $\alpha_s(M_7) = 0.1197\pm0.0016(exp)\pm0.0047(theory)$

c.f. ZEUS inclusive: $\alpha_s(M_7) = 0.1196 \pm 0.0025 (exp) \pm 0.0023 (theory)$

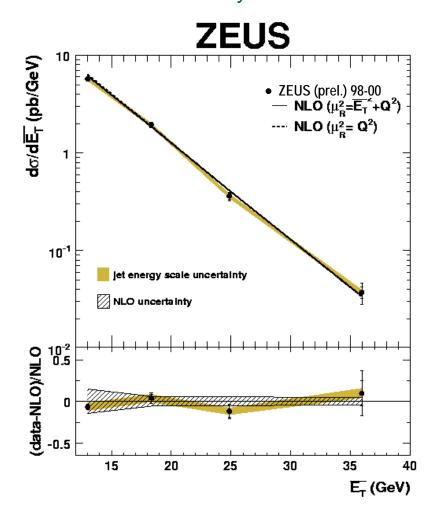
ZEUS DIJETS AT HIGH Q²

Motivation

IDEA:

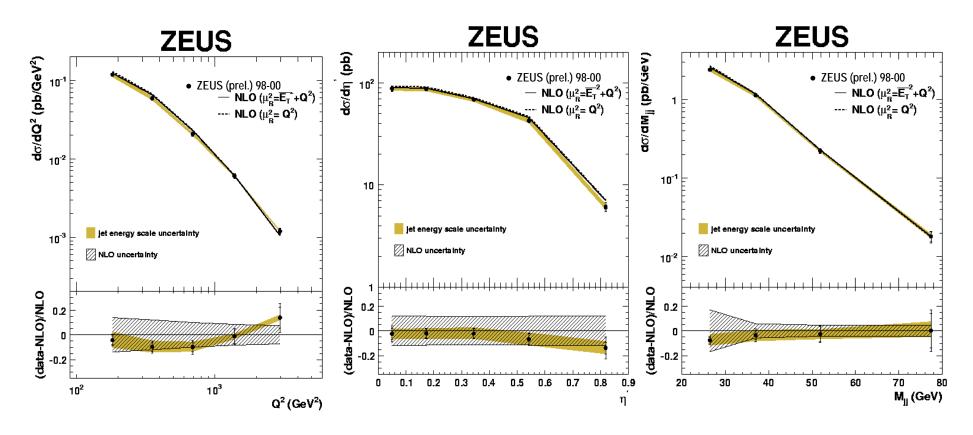
- PDFs characterized by variables Q² and ξ (proton momentum fraction)
- In dijet events:

$$\boldsymbol{\xi} = \mathbf{x}_{\mathrm{Bj}} \cdot \left(1 + \frac{\mathbf{M}_{\mathrm{jj}}^{2}}{\mathbf{Q}^{2}} \right)$$


 \rightarrow use dijets at high Q² from large 98-00 data sample (82 pb⁻¹) to obtain theoretically safe and precise information about PDFs (gluon at high ξ !)

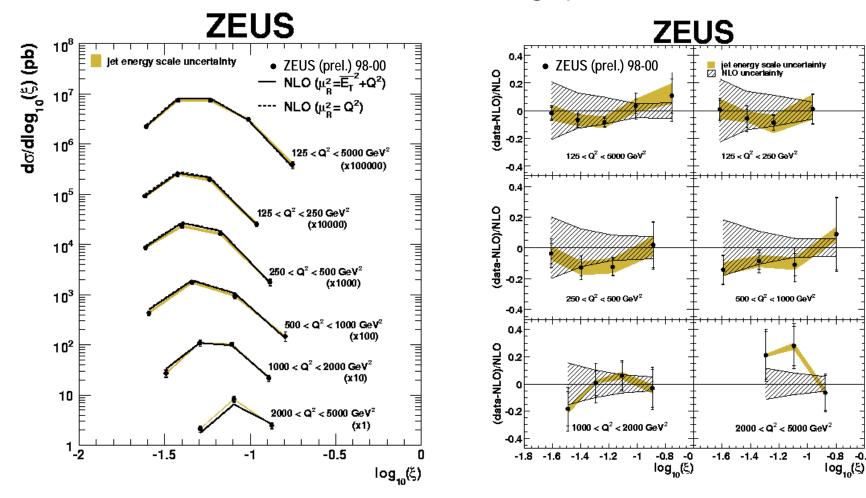
ANALYSIS:

- Phase Space:
 - $-125 < Q_{DA}^2 < 5000 \text{ GeV}^2$
 - $-\left|\cos\gamma_{\text{had}}\right| < 0.65$
- Jet Selection
 - $--2.0 < \eta_{Breit} < 1.5$
 - $-E_{T,1(2)} > 12$ (8) GeV
- Compare to NLO QCD (DISENT, CTEQ6)


EXAMPLE: mean E_T of dijets

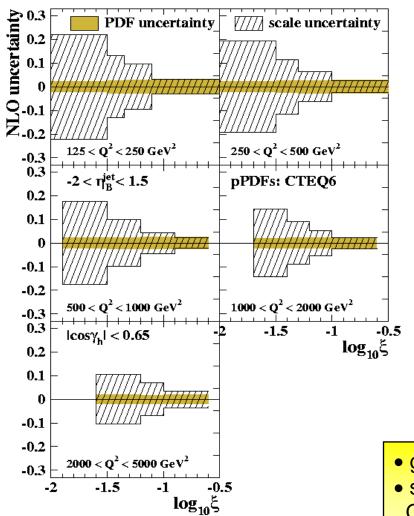
→ well described by NLO QCD!

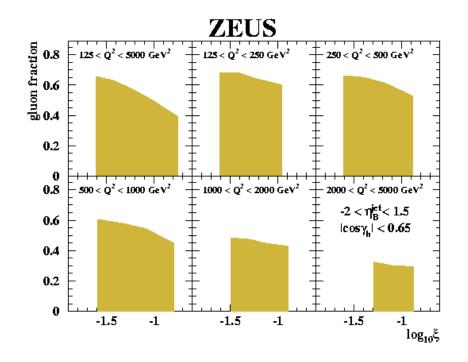
ZEUS DIJETS AT HIGH Q²


More single-differential results

- Data nicely described by NLO theory corrected to hadron level
- Theoretical uncertainties almost everywhere larger than experimental uncertainties
 - → dominating contribution from scale variation to estimate higher-order effects

ZEUS DIJETS AT HIGH Q²

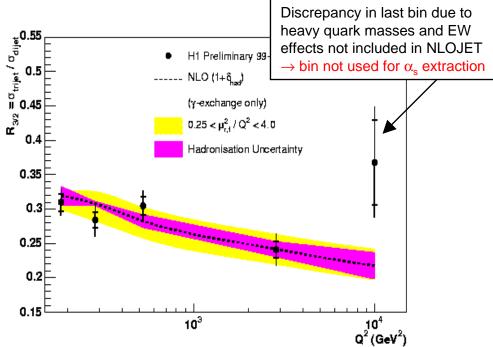

double-differential measurement: $log(\xi)$ in Q^2 bins

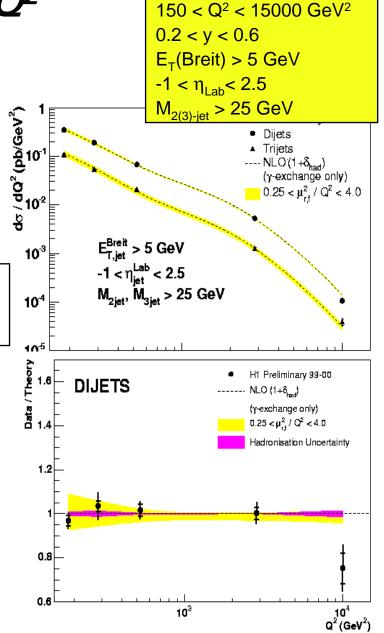

- Also double-differential data well described by NLO QCD
- Still large theoretical uncertainties; at high Q2, statistics getting low

ZEUS DIJETS AND POTENTIAL FOR PDFs

theory uncertainty and gluon fraction

- scale uncertainty 5-20%, large at small ξ
- PDF uncertainty ≤3%, significant at high ξ

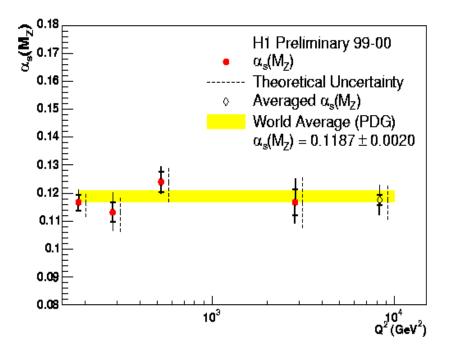

- gluon fraction decreases with increasing ξ and Q²
- still substantial gluon contribution → use in NLO QCD fits of PDFs.

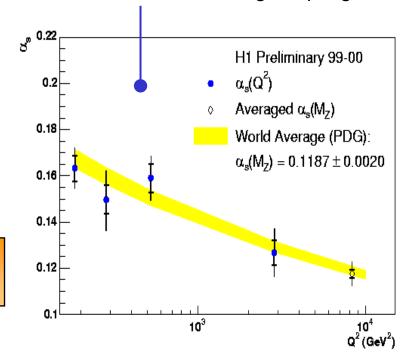

H1 MULTIJETS AT HIGH Q2

Di- and trijets from 99-00 data

 Analysis of di- and trijet events in large e⁺p data sample from 99-00 (65.4 pb⁻¹) (analysis similar to ZEUS DESY-05-019)

- NLO QCD (NLOJET++) gives excellent description
- In 3/2-jet ratio theoretical+experimental uncerts.
 (partly) cancel → use this quantity to extract α_s




Phase Space:

H1 MULTIJETS AT HIGH Q2

Strong coupling from di- and tri-jets

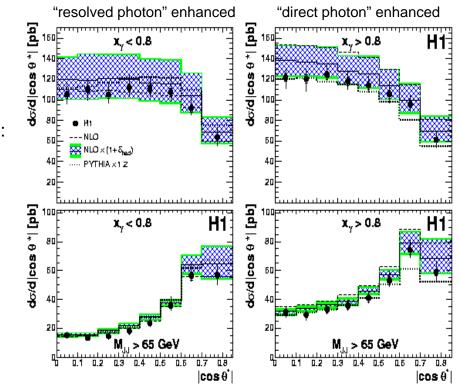
- α_s(M_Z) extracted from 3/2-jet ratio as a function of Q²
- Single data points compatible with each other and with world average
- Nice demonstration of running coupling

• Resulting value for coupling:

$$\alpha_s(M_Z) = 0.1175\pm0.0017(stat.) \\ \pm0.0050(syst.)\pm0.0061(theory)$$

- Uncertainties larger than for inclusive jets
- Systematics and theory uncertainties closer in magnitude than for (H1) inclusive jets

H1 DIJETS IN PHOTOPRODUCTION

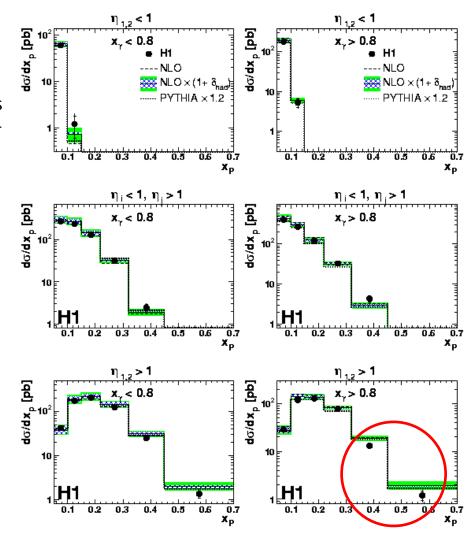

precise multi-differential test of QCD

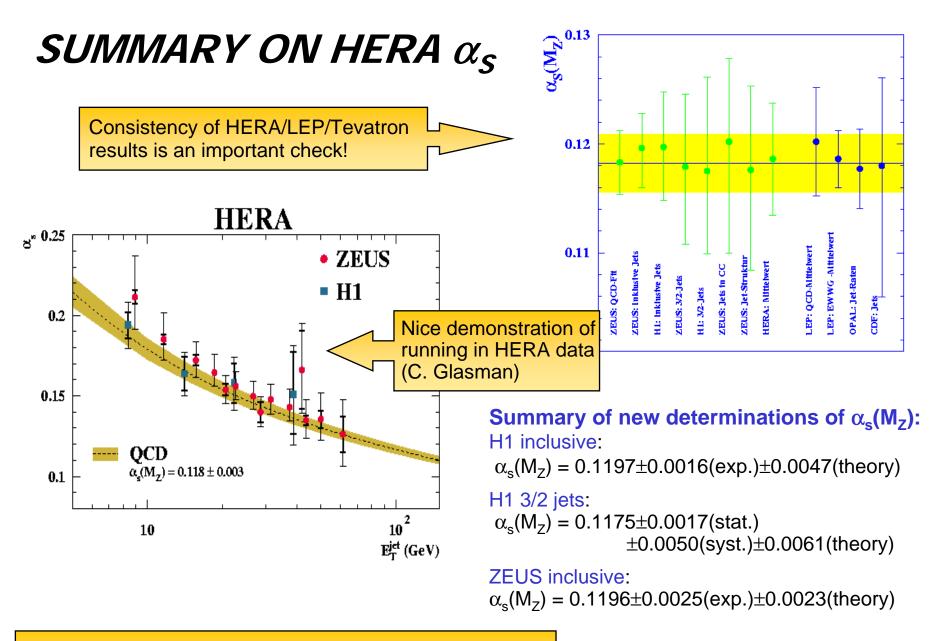
 $\left|\cos\boldsymbol{\theta}^*\right| = \left|\tan(\boldsymbol{\eta}_1 - \boldsymbol{\eta}_1)/2\right|$

- Data set of 66.6 pb⁻¹ e⁺p from 99-00; large statistics allow differential measurement (14k events)
- Phase space (high-E_T jets, perturbatively "safe"):
 - $-Q^2 < 1 \text{ GeV}^2$; 0.1 < y < 0.9
 - $E_T^{\text{jet1,2}}$ > 25 ,15 GeV; 0.5 < η^{jet} < 2.75
- Data might be used to exploit sensitivity to photon and proton PDFs
 - direct and resolved regimes via x,
 - proton momentum fractions x_p up to 0.7
 - disentangling gluon- and quark-initiated processes (Boson-Gluon-Fusion at low x_n)

$$x_{\gamma} = \frac{1}{2yE_{e}} \left(E_{T,I} e^{-\eta_{I}} + E_{T,2} e^{-\eta_{2}} \right)$$
$$x_{p} = \frac{1}{2E_{p}} \left(E_{T,I} e^{\eta_{I}} + E_{T,2} e^{\eta_{2}} \right)$$

Overall excellent demonstration of the power of pQCD




- Measurement in cosθ* gives access to dynamics of hard interaction → tests of pQCD
- High-E_T cuts suppress cross section at high cosθ*, for high M_{jj} is closer to ME expectations
- Faster rise in resolved than in direct
 - → gluon/quark propagator spin

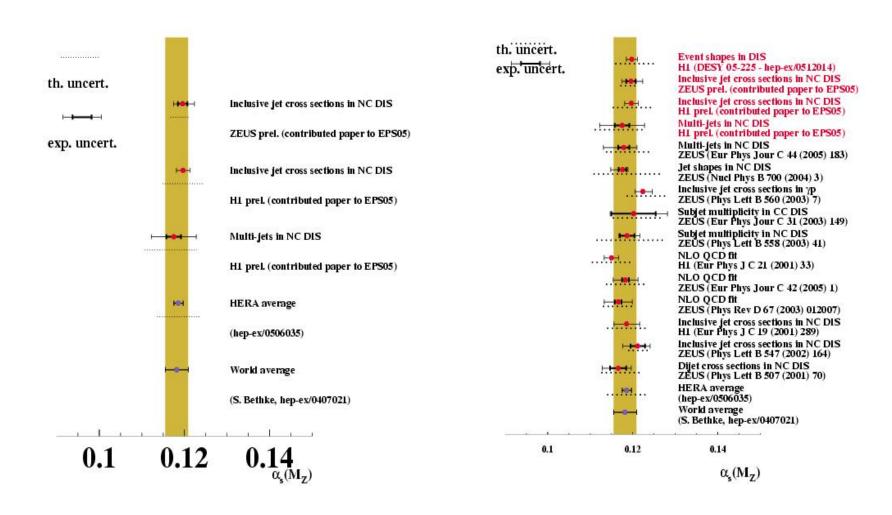
H1 DIJETS IN PHOTOPRODUCTION

exploiting the dijet event topology

- Jet pseudorapidities sensitive to momentum distributions of incoming partons
 - → measure x_p for both jets "backwards", both jets "forward" and for one jet forward and the other backward, separately for resolved and direct
 - → learn about PDFs/dynamics?
- Data are well described in all phase space regions except for highest x_p in the directenhanced sample with both jets forward:
 - insufficient parton dynamics in DGLAPbased NLO theory?
 - underestimated PDF uncertainty at high momentum fractions?
- Data might be very useful in global fits for the proton parton densities
 - \rightarrow how large is the sensitivity to the γ PDFs?

HERA: $\alpha_{\rm S}(M_{\rm Z})=0.1186\pm0.0011$ (exp.) ±0.0050 (theory)

Bethke: $\alpha_{\rm S}({\rm M_Z})=0.1182\pm0.0027$

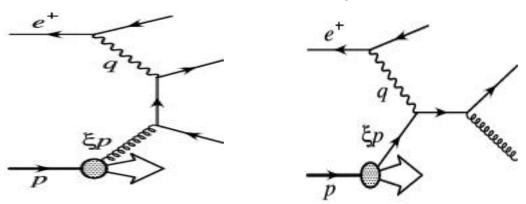

(HERA) JET PHYSICIST'S WISHLIST

or "conclusion and outlook"

achievements:	 excellent understanding of pQCD demonstrated concepts of factorisation/PDF universality work well very precise extraction of QCD parameters: HERA average: α_S(M_Z)=0.1186±0.0011(exp.)±0.0050(theory) clear reduction of gluon uncertainty at medium-to-high-x via use of jet data
experimental wishes:	not much to wish for really → we have large samples (in most fields statistics not an issue) → experimental uncertainties are well under control (luminosity, energy scale,) BUT: some questions would profit from more data and multi-differential analyses (parton dynamics) - also (wo)man-power will be an issue → people are leaving HERA!
theoretical wishes:	 some wishes here: • often scale uncertainty dominating source of uncertainty (low Q², E_T, M_{JJ}) - higher orders (NNLO) would really help (coupling, PDFs) - but also an important question - which is the "true" scale (BML,)? • hadronisation corrections of NLO theory done with LO MC programs - want NLO+PS for better consistency + as approach to NNLO → MC@NLO? (standard answer: e+e- easy, pp important,) but remember HERA can provide important input to LHC! • DGLAP-BFKL question: easy-to-use BFKL program would help us a lot •

Backups

α_s summary


HERA KINEMATICS AND JETS IN DIS

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Only need two out of three variables since $Q^2 = sxy$

Jet production in neutral current DIS at $O(\alpha\alpha_s)$

