Infrared safe definition of jet flavour Jet-flavour algorithms at parton level

A. Banfi

Università degli Studi di Milano-Bicocca and INFN, Sezione di Milano, Italy

In collaboration with Gavin Salam (LPTHE) and Giulia Zanderighi (CERN-TH)

Quark and gluon jets

- In the literature 376 papers with 'quark/gluon jet' in title
- Physically a quark/gluon jet = a jet initiated by a quark/gluon
- Experimentalists try determination of jet flavour
 - Discriminate quark/gluon jets using kinematical properties
 [jet profile, subjet multiplicity]
 - Jet charge = weighted charge of particles in a jet

$$Q_{\text{jet}} = \sum_{i \in \text{jet}} q_{ti} Q_i / \sum_{i \in \text{jet}} q_{ti}$$

All experimental definitions are practical but IR unsafe

- Hints of theoretical problems in IR safety and flavour
 - · Feynman is alleged to have said "impossible"
 - Flavour insensitive definition of observable suggested

[Nagy, Soper]

Subprocess decomposition

It is useful to decompose a QCD process into subprocesses

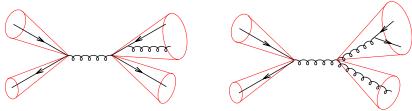
- to attribute more physical meaning to higher-order calculations
 [which subprocess gets largest contribution]
- to know relative numbers of quark and gluon jets
 [multiplicity studies, MC tuning]
- to combine matrix elements and parton shower

[CKKW]

· to match analytical resummations to fixed order

[CAESAR+NLOJET++]

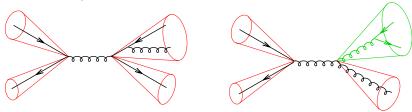
Problem: map final state momenta → Born momenta


- Flavour decomposition is ambiguous beyond LO ⇒ Interference
- Cluster of event into jets provides a mapping into a Born event
- Jet flavour = net flavour of particles in the jet

$$u = (0, 1, 0, 0, 0, 0), \quad \bar{u} = (0, -1, 0, 0, 0, 0) \quad u, \bar{u} \in \text{jet}$$

$$f_{\text{int}} = u + \bar{u} = (0, 0, 0, 0, 0, 0) = g$$

Problem: map final state momenta → Born momenta


- Flavour decomposition is ambiguous beyond LO ⇒ Interference
- Cluster of event into jets provides a mapping into a Born event
- Jet flavour = net flavour of particles in the jet

$$u = (0, 1, 0, 0, 0, 0), \quad \bar{u} = (0, -1, 0, 0, 0, 0) \quad u, \bar{u} \in je$$

$$f_{\text{iet}} = u + \bar{u} = (0, 0, 0, 0, 0, 0) = g$$

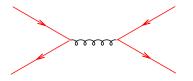
Problem: map final state momenta → Born momenta

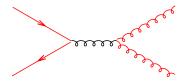
- Flavour decomposition is ambiguous beyond LO ⇒ Interference
- Cluster of event into jets provides a mapping into a Born event
- Jet flavour = net flavour of particles in the jet


$$\underline{\mathbf{u}} = (0, 1, 0, 0, 0, 0), \quad \bar{\underline{\mathbf{u}}} = (0, -1, 0, 0, 0, 0) \qquad \underline{\mathbf{u}}, \bar{\underline{\mathbf{u}}} \in \mathbf{jet}$$

$$f_{\text{jet}} = u + \bar{u} = (0, 0, 0, 0, 0, 0) = g$$

Problem: map final state momenta → Born momenta


- Flavour decomposition is ambiguous beyond LO ⇒ Interference
- Cluster of event into jets provides a mapping into a Born event
- Jet flavour = net flavour of particles in the jet


$$u = (0, 1, 0, 0, 0, 0), \quad \bar{u} = (0, -1, 0, 0, 0, 0) \quad u, \bar{u} \in \text{jet}$$

$$f_{\text{iet}} = u + \bar{u} = (0, 0, 0, 0, 0, 0) = q$$

Problem: map final state momenta → Born momenta

- Flavour decomposition is ambiguous beyond LO ⇒ Interference
- Cluster of event into jets provides a mapping into a Born event
- Jet flavour = net flavour of particles in the jet

$$u = (0, 1, 0, 0, 0, 0), \quad \bar{u} = (0, -1, 0, 0, 0, 0) \quad u, \bar{u} \in \text{jet}$$

$$f_{\text{jet}} = u + \bar{u} = (0, 0, 0, 0, 0, 0) = g$$

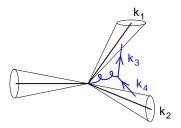
Jet flavour and infrared safety

At NLO any IR safe jet algorithm is also an IR safe flavour algorithm

- Soft/collinear gluons do not change the flavour
- Collinear $q\bar{q}$ pairs are always recombined together

Beyond NLO soft large angle $q\bar{q}$ pairs can be clustered into different jets thus spoiling the reconstruction of jet flavour

IR safety \Leftrightarrow soft quarks and hard partons never recombined

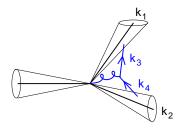


Jet flavour and infrared safety

At NLO any IR safe jet algorithm is also an IR safe flavour algorithm

- Soft/collinear gluons do not change the flavour
- Collinear $q\bar{q}$ pairs are always recombined together

Beyond NLO soft large angle $q\bar{q}$ pairs can be clustered into different jets thus spoiling the reconstruction of jet flavour


IR safety \Leftrightarrow soft quarks and hard partons never recombined

Jet flavour and infrared safety

At NLO any IR safe jet algorithm is also an IR safe flavour algorithm

- Soft/collinear gluons do not change the flavour
- Collinear $q\bar{q}$ pairs are always recombined together

Beyond NLO soft large angle $q\bar{q}$ pairs can be clustered into different jets thus spoiling the reconstruction of jet flavour

IR safety ⇔ soft quarks and hard partons never recombined

Jet flavour algorithms in e^+e^-

Durham algorithm

• Soft gluon emission $g \rightarrow g_i g_i$

$$[dk_j]|M^2(k_j)| \sim \frac{dE_j}{\min(E_i, E_j)} \frac{d\theta_{ij}^2}{\theta_{ij}^2}$$

• $d_{ij}^{(D)} o 0$ for $\theta_{ij} o 0$ and $E_j o 0$ $d_{ij}^{(D)} = 2(1 - \cos \theta_{ij}) imes \min(E_i^2, E_j^2)$

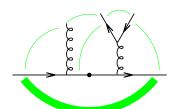
Flavour algorithm

• $q\bar{q}$ splitting $g \rightarrow q_i q_j$

$$[dk_j]|M^2(k_j)| \sim \frac{dE_j}{\max(E_i, E_j)} \frac{d\theta_{ij}^2}{\theta_{ij}^2}$$

• $d_{ij}^{(F)} o 0$ for $\theta_{ij} o 0$ only

$$d_{ij}^{(F)} = 2(1 - \cos \theta_{ij}) \times \max(E_i^2, E_j^2)$$

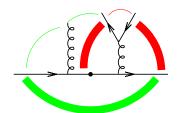

Jet flavour algorithms in e^+e^-

Durham algorithm

• Soft gluon emission $g \rightarrow g_i g_i$

$$[dk_j]|M^2(k_j)| \sim \frac{dE_j}{\min(E_i, E_j)} \frac{d\theta_{ij}^2}{\theta_{ij}^2}$$

• $d_{ij}^{(D)} o 0$ for $heta_{ij} o 0$ and $E_j o 0$ $d_{ij}^{(D)} = 2(1-\cos\theta_{ij}) imes \min(E_i^2, E_j^2)$


Flavour algorithm

• $q\bar{q}$ splitting $g \rightarrow q_i q_j$

$$[dk_j]|M^2(k_j)| \sim rac{dE_j}{\max(E_i, E_j)} rac{d heta_{ij}^2}{ heta_{ij}^2}$$

• $d_{ij}^{(F)}
ightarrow 0$ for $heta_{ij}
ightarrow 0$ only

$$d_{ij}^{(F)} = 2(1 - \cos \theta_{ij}) \times \max(E_i^2, E_j^2)$$

Jet flavour algorithms in e^+e^-

Durham algorithm

• Soft gluon emission $g \rightarrow g_i g_j$

$$[dk_j]|M^2(k_j)| \sim rac{dE_j}{\min(E_i, E_j)} rac{d heta_{ij}^2}{ heta_{ij}^2}$$

• $d_{ij}^{(D)}
ightarrow 0$ for $heta_{ij}
ightarrow 0$ and $E_j
ightarrow 0$

$$d_{ij}^{(D)} = 2(1 - \cos \theta_{ij}) \times \min(E_i^2, E_j^2)$$

Flavour algorithm

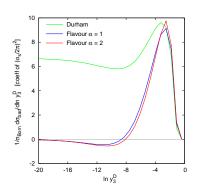
• $q\bar{q}$ splitting $g \rightarrow q_i q_j$

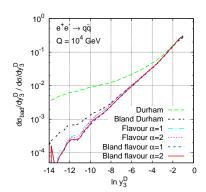
$$[dk_j]|M^2(k_j)| \sim \frac{dE_j}{\max(E_i, E_j)} \frac{d\theta_{ij}^2}{\theta_{ij}^2}$$

• $d_{ij}^{(F)} o 0$ for $\theta_{ij} o 0$ only

$$d_{ij}^{(F)} = 2(1 - \cos \theta_{ij}) \times \max(E_i^2, E_j^2)$$

Class of IR safe algorithms identified by $\alpha \in (0, 2]$

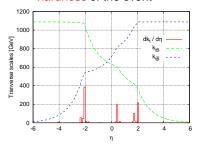

$$d_{ij}^{(F)} = 2(1-\cos\theta_{ij}) \times \left\{ \begin{array}{ll} \max(E_i,E_j)^{\alpha} \ \min(E_i,E_j)^{2-\alpha} \\ \min(E_i^2,E_j^2) \end{array} \right. \quad \text{softer of } i,j \text{ flavourless}$$


Optional: flavour blandness \Leftrightarrow Recombine only $q\bar{q}$ with no net flavour

Tests of IR safety in e^+e^- annihilation

- Generate multi-parton configurations in e^+e^- and cluster to 2 jets
- Compute fraction of misidentified events $\sigma_{\rm bad}$ as a function of y_3^D
- IR safety at fixed order (EVENT2) $\Leftrightarrow \sigma_{\rm bad}$ vanishes for $y_3 \to 0$
- IR safety at all orders (HERWIG) \Leftrightarrow different scalings for $y_3 \to 0$

Jet flavour in hadron-hadron collisions

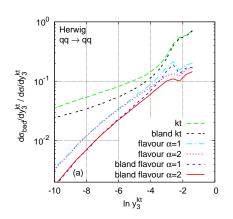

• Distance d_{ij} is modified to have boost invariance

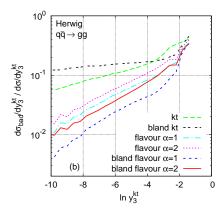
$$d_{ij}^{(F)} = (\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2) \times \left\{ \begin{array}{ll} \max(k_{ti}, k_{tj})^\alpha \min(k_{ti}, k_{tj})^{2-\alpha} & \text{softer of } i, j \text{ flavoured} \\ \min(k_{ti}^2, k_{tj}^2) & \text{softer of } i, j \text{ flavourless} \end{array} \right.$$

• Need a distance wrt $B(\eta \to \infty)$ and $\bar{B}(\eta \to -\infty)$

$$d_{iB}^{(F)} = \left\{ \begin{array}{ll} \max(k_{ti}, k_{tB}(\eta_i))^{\alpha} \min(k_{ti}, k_{tB}(\eta_i))^{2-\alpha} & \quad i \text{ flavoured} \\ \min(k_{ti}^2, k_{tB}^2(\eta_i)) & \quad i \text{ flavourless} \end{array} \right.$$

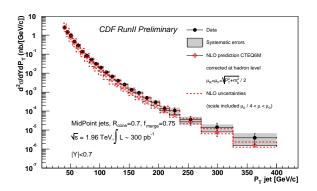
 k_{tB}(η) and k_{tB̄}(η) monotonic functions of η that saturate at the typical hardness of the event



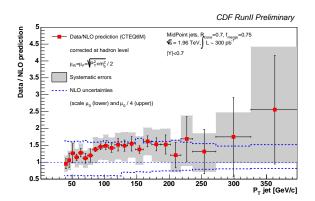

$$k_{tB} = \sum_{i} k_{ti} (\Theta(\eta_{i} - \eta) + \Theta(\eta - \eta_{i}) e^{\eta_{i} - \eta})$$

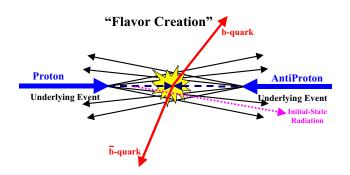
$$k_{t\bar{B}} = \sum_{i} k_{ti} (\Theta(\eta - \eta_i) + \Theta(\eta_i - \eta) e^{\eta - \eta_i})$$

Tests of IR safety in hadron-hadron collisions

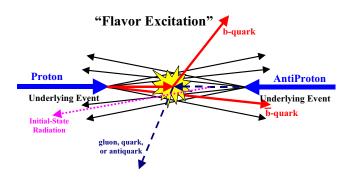

- IR safety tests impossible at fixed order at the moment
 - Missing favour information in fixed order programs
 - Missing two-loop virtual correction to each subprocess
- Tests with HERWIG ⇒ Importance of flavour blandness

Heavy-flavour jets

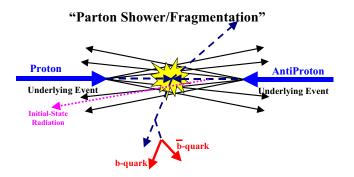

- The algorithm has been designed to work at parton level
- At hadron level the algorithm can be used for heavy flavour jets
- Experimental definition of b-jet = jet containing b-flavour
- Comparisons to NLO of inclusive p_T spectra have large renormalisation scale uncertainties ($\sim 40-50\%$)


Heavy-flavour jets

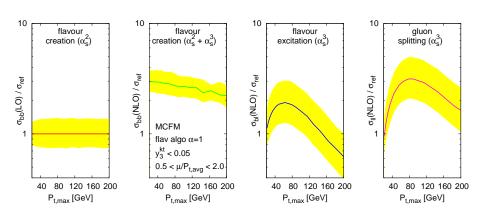
- The algorithm has been designed to work at parton level
- At hadron level the algorithm can be used for heavy flavour jets
- Experimental definition of b-jet = jet containing b-flavour
- Comparisons to NLO of inclusive p_T spectra have large renormalisation scale uncertainties ($\sim 40-50\%$)


Flavour production mechanisms at hadron colliders

- Flavour creation $\alpha_{\rm s}^2 + \alpha_{\rm s}^3 \Rightarrow$ well described by NLO QCD
- Flavour excitation $\alpha_s^2 \times \alpha_s \ln E_T/m_b \Rightarrow \alpha_s^n \ln^n E_T/m_b$ in b pdf
- Gluon splitting $\alpha_{\rm s}^2 \times \alpha_{\rm s} \ln E_T/m_b \Rightarrow$ all order $\alpha_{\rm s}^n \ln^{2n-1} E_T/m_b$

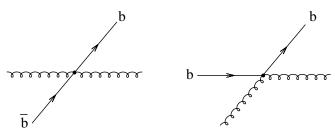

Flavour production mechanisms at hadron colliders

- Flavour creation $\alpha_{\rm s}^2 + \alpha_{\rm s}^3 \Rightarrow$ well described by NLO QCD
- Flavour excitation $\alpha_s^2 \times \alpha_s \ln E_T/m_b \Rightarrow \alpha_s^n \ln^n E_T/m_b$ in b pdf
- Gluon splitting $\alpha_s^2 \times \alpha_s \ln E_T/m_b \Rightarrow$ all order $\alpha_s^n \ln^{2n-1} E_T/m_b$


Flavour production mechanisms at hadron colliders

- Flavour creation $\alpha_{\rm s}^2 + \alpha_{\rm s}^3 \Rightarrow$ well described by NLO QCD
- Flavour excitation $\alpha_s^2 \times \alpha_s \ln E_T/m_b \Rightarrow \alpha_s^n \ln^n E_T/m_b$ in b pdf
- Gluon splitting $\alpha_s^2 \times \alpha_s \ln E_T/m_b \Rightarrow$ all order $\alpha_s^n \ln^{2n-1} E_T/m_b$

Theoretical uncertainties in NLO calculation


- Tevatron RunII $\sqrt{s} = 1.96$ TeV
- Dijet events with $P_{t, \rm max} > 30 {\sf GeV}$ and $|\eta_{\rm jet}| < 1$
- NLO predictions obtained with MCFM

IR safe calculations of b-jet E_T spectra

- IR safe flavour algorithms ⇒ no gluon splitting contributions
- Dijet cross sections calculable at NLO, eventually with MC@NLO
- Reduced theoretical uncertainties in inclusive jet cross sections
- IR safe cross sections calculable with NLO programs with massless partons (i.e. setting $m_b=0$)
- New phenomenological studies feasible

[b parton densities, F_2^b , F_2^c , ...]

Summary

- We have a variant of k_t algorithm with IR safe determination of jet flavour
- Algorithm acts differently for quarks and gluons
 - designed for parton level
 - not practical at hadron level for light favours (maybe JADE?)
- Matching of analytical resummations as soon as flavour info in fixed order programs will become available

[Nagy, work in progress]

 Applications at hadron level for heavy flavour studies are under investigation . . .