Leading Neutron Energy & \(p_T \) Distributions from ZEUS

B. Schmidke
MPI München
On behalf of the ZEUS collaboration

Outline:

- Motivations: LN production, One Pion Exchange (OPE), absorption
- Data sets: DIS, photoproduction (\(\gamma p \)), LN measurement
- LN in DIS: energy, \(p_T \) distributions
- Comparison: LN in photoproduction & DIS
- Comparison: LN & leading protons
- Comparison: OPE models, absorption (rescattering) models
- Comparison: LN in non-OPE MC models
Motivations: LN production, OPE

- LN can come from 'standard' fragmentation (baryon # has to go somewhere)
- Can compare to 'standard' MC gens.: x_L, p_T^2 distributions

- LN can be produced via isovector exchange: One Pion Exchange (OPE)
- Parameterizations from low energy hadronic scattering data. Can compare: x_L, p_T^2 distributions
Motivations: Absorption

In DIS γ^* is small; in photoproduction γ large, rescattering (absorption) of n may occur:

- Compare photoproduction & DIS:
 - x_L, p_T^2 distributions
 - effects of absorption?
- Recently: Kaidalov, Khoze, Martin, Ryskin 'Leading neutron spectra' hep-ph/0602215
- They calculate the effects of absorption (rescattering), and subsequent migration of LN in (x_L, p_T^2) space
- Next speaker for details <

DIS small γ, no rescattering

photoproduction large γ, rescattering

n kicked to lower x_L, higher p_T; may escape detection (migration)
Data Sets

Inclusive data (i.e. no LN tag):
- **DIS**: $Q^2 > 2 \text{ GeV}^2$, $\langle Q^2 \rangle \approx 14 \text{ GeV}^2$
- **γp**: $Q^2 < 0.02 \text{ GeV}^2$, e^+ tagged $\Rightarrow 180 < W_{\gamma p} < 255 \text{ GeV}$

LN measurement: Forward Neutron Calorimeter (FNC) & Tracker (FNT)
- $10.2 \lambda_1$ Pb-scint. calorimeter 105m from I.P.
- Scintillator hodoscope 1 λ_1 into calorimeter for position detection
- Energy resolution $\sigma_E/E \approx 0.7/\sqrt{E}$
- p_T resolution dominated by proton beam p_T spread $\sim 50-100 \text{ MeV}$
- Magnet apertures limit $\Theta_n < 0.75 \text{ mrad} \Rightarrow p_T^2 < 0.476 x_L^2 \text{ GeV}^2$

LN yields:
- DIS, γp have very different inclusive cross sections σ_{inc}
- For sensible comparisons look at LN yields: $\sigma_{\text{LN}}/\sigma_{\text{inc}}$
- Additional benefit: systematic uncertainties of central ZEUS cancel; only have LN systematic uncertainties
LN in DIS: x_L distribution

- LN yield $\rightarrow 0$ at kinematic limit $x_L^2 \rightarrow 1$
- Below $x_L^2 \approx 0.7$ yield drops due to decreasing p_T^2 range

Systematic uncertainties from:
- Proton beam 0° point
- FNC energy scale
- Dead material before FNC
p_T^2 distributions DIS

$$\frac{1}{\sigma_{inc}} \frac{d^2\sigma_{LN}}{dx_L dp_T^2}$$

ZEUS

log scale

Note varying p_T^2 ranges $\propto x_L^2$

Well described by exponential in p_T^2

ZEUS (prel.) 40 pb$^{-1}$
$Q^2 > 2$ GeV2
Fit $d\sigma/dp_T^2 \propto \exp(-bp_T^2)$
\(p_T^2 \) distributions: slopes & intercepts

- \(p_T^2 \) distributions well described by exponential:

\[
\frac{1}{\sigma_{inc} dx_L dp_T^2} \frac{d^2\sigma_{LN}}{dx_L dp_T^2} = a(x_L)e^{-b(x_L)p_T^2}
\]

- Together intercepts \(a(x_L) \) and slopes \(b(x_L) \) fully characterize \((x_L,p_T^2) \) distribution
p_T^2 distributions: slopes & intercepts

- DIS intercepts $a(x_L)$:

- DIS slopes $b(x_L)$:

\[
\frac{1}{\sigma_{inc}} \frac{d^2\sigma_{LN}}{dx_L dp_T^2} = a(x_L)e^{-b(x_L)p_T^2}
\]
Comparing γp & DIS

To minimize systematic uncertainties in comparison:

- Use only DIS from period when γp+LN trigger active (~20% of DIS sample)
- Many LN systematic uncertainties cancel taking ratios:
 - Ratio of x_L distributions: γp/DIS
 - Ratio of p_T^2 distributions: γp/DIS

$$\Rightarrow \Delta b = b(\gamma p) - b(DIS)$$
Comparison γp/DIS: x_L distributions

- Ratio $\sim 70\%$ mid-x_L, rising to 1 as $x_L \to 0.9$
- Qualitatively similar to D' Alesio & Pirner (loss through absorption)
- Know for $\gamma^{(*)}p$: $\sigma_{\gamma p}$, $\sigma_{\text{DIS}-p}$ have different α's: $\sigma \propto W^\alpha (W = \gamma^{(*)}p$ c.m. energy)
- Assume same α's for $\sigma_{\gamma \pi}$, $\sigma_{\text{DIS}-\pi}$
- Also: $W^2_\pi = (1-x_L)W^2_p$
- \Rightarrow scale absorption ratio by $(1-x_L)^{-0.1}$
- Nice agreement with data
Comparison γp/DIS: p_T^2 distributions

- Small but clear difference: $b(\gamma p) > b(\text{DIS})$ for $0.6 < x_L < 0.9$
- Qualitatively consistent w/ absorption:
 more abs. @ small $r_{n\pi} \sim$ large p_T
- Quantitative comparison: next speaker
Comparison: LN & leading protons

- DIS x_L distribution $p_T^2 < 0.04$ GeV2:

 ![Graph showing DIS x_L distribution for LN and LP]

 - For pure isovector exchange isospin Clebsch-Gordan $r_{LP} = \frac{1}{2} r_{LN}$
 - $r_{LP} > r_{LN} \Rightarrow$ other exchanges needed

- DIS b-slopes:

 ![Graph showing DIS b-slopes for LN and LP]

 - Different exchanges conspire to give \simflat $b(x_L)$ for LP
Comparison: OPE models

- Numerous parameterizations of pion flux $f_{\pi/p}(x_L, p_T)$ in literature
- Here compare to measured DIS $b(x_L)$:
- Best agreeing models shown here; others wildly off
- All give too large $b(x_L)$
- More refinement needed: absorption, migration
Comparison: OPE w/ absorption

- Recent work of Kaidalov, Khoze, Martin & Ryskin:
 - start with pure OPE
 - some n rescatter on γ
 - rescattered n migrate in (x_L, p_T)

- Very nice agreement with LN in γp:

- Much more next speaker
Comparison: non-OPE MC models

- Compare to several popular MC models w/o OPE
 (i.e. RAPGAP in standard mode)
- ~default settings for all models
- Here compare to DIS x_L distribution:
 - LEPTO ~OK in shape, magnitude
 - Others too few n, too low x_L
Comparison: non-OPE MC models

- Intercepts in DIS:
 - LEPTO ~hint of shoulder high x_L
 - Others wrong dependence, too low for $x_L > 0.5$

- Slopes in DIS:
 - No models have the steep $b(x_L)$ in the data
Summary

- Best measured LN x_L, p_T distributions in DIS, γp
- Comparison DIS$\leftrightarrow\gamma p$: evidence for absorption of n in large γ
- Pure OPE does not fully describe data
- More refined calculations: OPE+absorption+migration
 \Rightarrow very promising agreement with data (next speaker)
- MC models with 'standard' fragmentation do not describe the data (LEPTO has some promise)