<u>Factorization Breaking in</u> <u>Diffractive Dijet Production</u>

Michael Klasen LPSC Grenoble June 7, 2006

Publications

With G. Kramer

PLB 508 (2001) 259:
EPJC 38 (2004) 39:
PRL 93 (2004) 232002:
JPG 31 (2005) 1391:

 $\gamma p \rightarrow 2 \text{ jets}+n$ $\gamma p \rightarrow 2 \text{ jets}+p$ $\gamma^* p \rightarrow 2 \text{ jets}+p$ New fact. scheme

Motivation

Hard diffraction:

 \rightarrow Does factorization hold?

Deep inelastic scattering: Yes \rightarrow Direct photoproduction Hadroproduction: No \rightarrow Resolved photoproduction

Why next-to-leading order? $\rightarrow \sigma_{tot} = \sigma_{dir}(\mathbf{x}_{\gamma'}M_{\gamma}) + \sigma_{res}(\mathbf{x}_{\gamma'}M_{\gamma})$ $\rightarrow \text{At LO } \mathbf{x}_{\gamma} = 1$, but at NLO $\mathbf{x}_{\gamma} \leq 1$ $\rightarrow \log(M_{\gamma})$ -dependence cancels

Diffr. hadroproduction of dijets:

CDF Coll., PRL 84 (2000) 5043

Kinematics

Diffractive processes at HERA:

H1 Coll., EPS 2003 and DIS 2004

Inclusive DIS:

$$s = (k+p)^2$$
, $Q^2 = -q^2$, and $y = \frac{qp}{kp}$
Diffractive DIS:
 $M_X^2 = p_X^2$ and $t = (p - p_Y)^2$,
 $M_Y^2 = p_Y^2$ and $x_{I\!P} = \frac{q(p - p_Y)}{qp}$

Experimental cuts:

0.3	<	y	<	0.65
		Q^2	<	$0.01 \ { m GeV^2}$
		$E_T^{\texttt{jet1}}$	>	$5 \mathrm{GeV}$
		$E_T^{ extsf{jet2}}$	>	$4 \mathrm{GeV}$
-1	<	$\eta_{ ext{lab}}^{ ext{jet1,2}}$	<	2
		$x_{I\!\!P}$	<	0.03
		M_Y	<	$1.6 {\rm GeV}$
		-t	<	$1 \mathrm{GeV^2}$

S

Diffractive Parton Distributions

Hard QCD factorization:

$$\frac{d^2\sigma}{dx_{I\!\!P}dt} = \sum_a \int_x^{x_{I\!\!P}} d\xi \sigma_a^{\gamma*}(x,Q^2,\xi) f_a^D(\xi,Q^2;x_{I\!\!P},t)$$

Regge factorization: $f^{D}_{a}(x,Q^{2};x_{I\!\!P},t) = f_{I\!\!P/p}(x_{I\!\!P},t)f_{a/I\!\!P}(\beta = x/x_{I\!\!P},Q^{2})$ Pomeron flux factor:

$$f_{I\!\!P/p}(x_{I\!\!P},t) = x_{I\!\!P}^{1-2\alpha_{I\!\!P}(t)} \exp(B_{I\!\!P}t)$$

Pomeron tracectory:

$$\alpha_{I\!P}(t) = \alpha_{I\!P}(0) + \alpha'_{I\!P}t$$

р

Proof of Hard Factorization

Diffractive deep inelastic scattering:

J.C. Collins, PRD 57 (1998) 3051

Light cone coordinates: $\boldsymbol{q}^{\mu} = (q^+, q^-, \boldsymbol{q}_T)$

Leading regions: • H: $q^{\mu} \approx O(Q)$ • J: $l^{\mu} \approx (0, Q/\sqrt{2}, \mathbf{0}_{T})$ • A: $|k^{\mu}| \ll O(Q)$

Poles in k⁺-plane:

- Final state: Upper half-plane
- Initial state: Lower half-plane

Multipomeron Exchanges

Direct photoproduction:

Resolved photoproduction:

Diffractive Photoproduction of Dijets

Cross section:

$$\begin{aligned} d\sigma^{D}(ep \to e+2 \text{ jets} + X' + Y) &= \\ \sum_{a,b} \int_{t_{\text{cut}}}^{t_{\min}} dt \int_{x_{I\!\!P}}^{x_{I\!\!P}^{\max}} dx_{I\!\!P} \int_{0}^{1} dz_{I\!\!P} \int_{y_{\min}}^{y_{\max}} dy \int_{0}^{1} dx_{\gamma} \\ f_{\gamma/e}(y) f_{a/\gamma}(x_{\gamma}, M_{\gamma}^{2}) f_{I\!\!P/p}(x_{I\!\!P}, t) f_{b/I\!\!P}(z_{I\!\!P}, M_{I\!\!P}^{2}) \\ d\sigma^{(n)}(ab \to \text{jets}). \end{aligned}$$

Photon flux: Weizsäcker-Williams approximation

$$f_{\gamma/e}(y) = \frac{\alpha}{2\pi} \left[\frac{1 + (1-y)^2}{y} \ln \frac{Q_{\max}^2(1-y)}{m_e^2 y^2} + 2m_e^2 y (\frac{1-y}{m_e^2 y^2} - \frac{1}{Q_{\max}^2}) \right]$$

Factorizable Multipomeron Exchanges

June 7, 2006

Two-Channel Eikonal Model

Hadronic collisions:

$$p$$
 p h $+$ p N^* h

Survival probability:

$$S|^{2} = \frac{\int d^{2}b \left(|\mathcal{M}_{v}|^{2} e^{-\Omega_{v}(s,b)} + |\mathcal{M}_{sea}|^{2} e^{-\Omega_{sea}(s,b)} \right)}{\int d^{2}b \left(|\mathcal{M}_{v}|^{2} + |\mathcal{M}_{sea}|^{2} \right)}$$

Opacity / optical density: K_i = 1 $\pm\,\gamma$

$$\Omega_i = K_i \, \frac{(g_{pp}^{I\!\!P})^2 \, (s/s_0)^{\Delta}}{4\pi B} \, e^{-b^2/4B}$$

Kaidalov et al., EPJC 21 (2001) 521

Photoproduction:

Generalized vector meson dominance: $\int \mathcal{P}^{C} = 1^{--}: \gamma \rightarrow \rho, \omega, ...$

Fitted parameters (W = 200 GeV): Total cross section: σ^{tot} (ρp) = 34 mb Pomeron slope: B = 11.3 GeV⁻² Transition probability: $\gamma = 0.6$

→ ZEUS Coll., EPJ C2 (1998) 247 → H1 Coll., EPJ C13 (2000) 371

Survival probability: $R \equiv |S|^2 \approx 0.34$

Kaidalov et al., PLB 567 (2003) 61

June 7, 2006

No Sign of Factorization Breaking at LO

June 7, 2006

Michael Klasen, LPSC Grenoble

11

Non-Factorizable Multipomeron Exchanges

June 7, 2006

ZEUS Analysis

Other observables:

 $\left(d\sigma/dx_{\gamma}^{obs}\right)_{data}/\left(d\sigma/dx_{\gamma}^{obs}\right)_{NLO}$

Diffractive / Inclusive Production

June 7, 2006

But: Data also support direct suppression!

Factorization Scale Dependence

June 7, 2006

Hadronization Corrections

 \rightarrow Observable and model dependent!

E_T-Distribution

Importance of large E_T : Direct process dominates IS singularity less important 5 Hadronization corrections small Experimentally directly accessible 6 Less sensitive than $x\gamma$ Result: Suppressed result agrees Unsuppressed 50% too low How can we learn more? Critical role of IS singularity 6 Transition from γp to DIS 8

High- to Low-Q² Transition in DIS

Factorization Scale Dependence (1)

Factorization Scale Dependence (2)

$$M(P^2)_{\overline{MS}} = -\frac{1}{2N_c} P_{q_i \leftarrow \gamma}(z_a) \ln\left(\frac{M_{\gamma}^2 z_a}{(z_a P^2 + y_s s)(1 - z_a)}\right) + \frac{Q_i^2}{2}$$

Q²-dependence:

z_{IP}-dependence:

Factorization Scheme Dependence

$$F_2^{\gamma}(Q^2) = \sum_q 2x e_q^2 \left\{ f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + C_q \otimes f_{q/\gamma}(Q^2) \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q \otimes f_{q/\gamma}(Q^2) + \frac{\alpha_s$$

Q²-dependence:

z_{IP}-dependence:

Components of Parton Densities in Photon

- SaS parameterizations allow for separation:
 - Anomalous component: Resummation of IS singularity
 - Hadronic component: Vector meson dominance model
- VMD component suppressed:
 - 10⁻⁴ for $Q^2 \approx 70 \text{ GeV}^2$
 - 10^{-2} for $Q^2 \approx 5 \text{ GeV}^2$
- Anomalous component dominates:
 - Direct higher order contributions
- Known from inclusive low-Q² production

Leading Neutron Production (1)

Leading Neutron Production (2)

Conclusions

Hard diffraction: Factorizable or not?

- Deep inelastic scattering: Yes \rightarrow Diffractive parton densities
- Hadronic scattering: No \rightarrow Multipomeron exchanges
- Important application: Diffractive Higgs production at LHC

Diffractive photoproduction of dijets: Initial state singularity at NLO

- Tirect / resolved photoproduction: x_{γ} and M_{γ} dependence
- (Non-) factorizable multipomeron exchanges

Two-channel eikonal model:

- **c** Generalized vector meson dominance: $\gamma \rightarrow \rho$, ω , ...
- Rapidity gap survival probability: R = 0.34

Related process:

Leading neutron with π -exchange (NB: $f_{q/\pi'}$ not $f_{g/IP}$!)