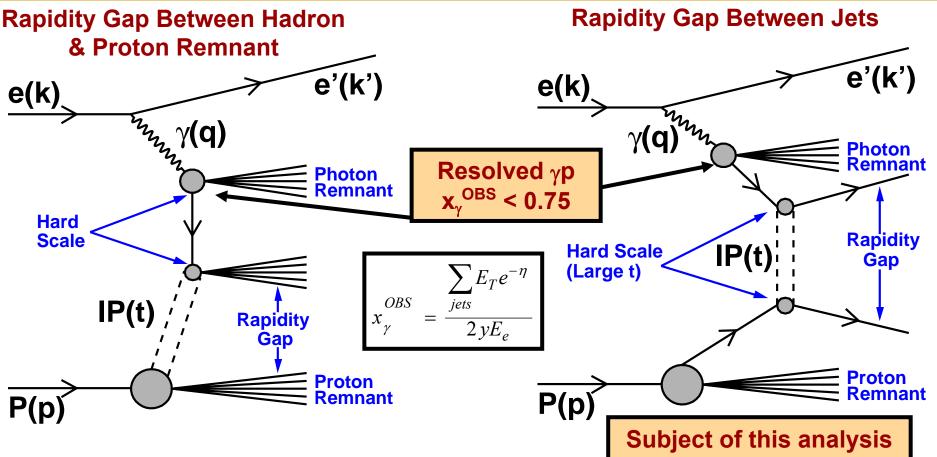


Photoproduction of Events with Rapidity Gaps Between Jets at ZEUS

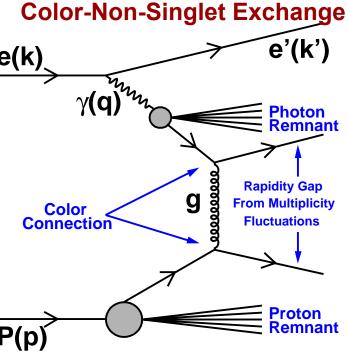
Patrick Ryan University of Wisconsin


On Behalf of the ZEUS Collaboration HERA-LHC Workshop CERN June 7, 2006 Results Presented at DIS 2006

Patrick Ryan, Univ. of Wisconsin

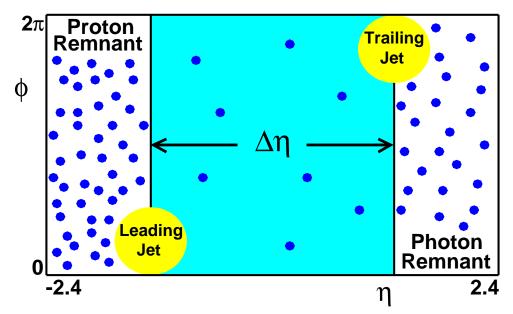
Rapidity Gaps Between Jets in PHP

Hard Diffractive Photoproduction


- Study the nature of the Pomeron
 - Observe Color-Singlet exchange
- Hard Scale allows application of pQCD to diffractive process

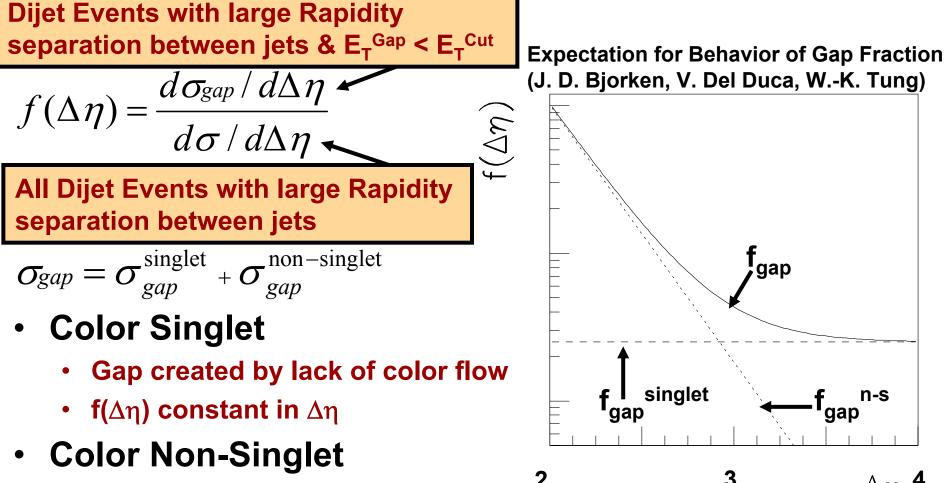
FUS

Rapidity Gaps between Jets

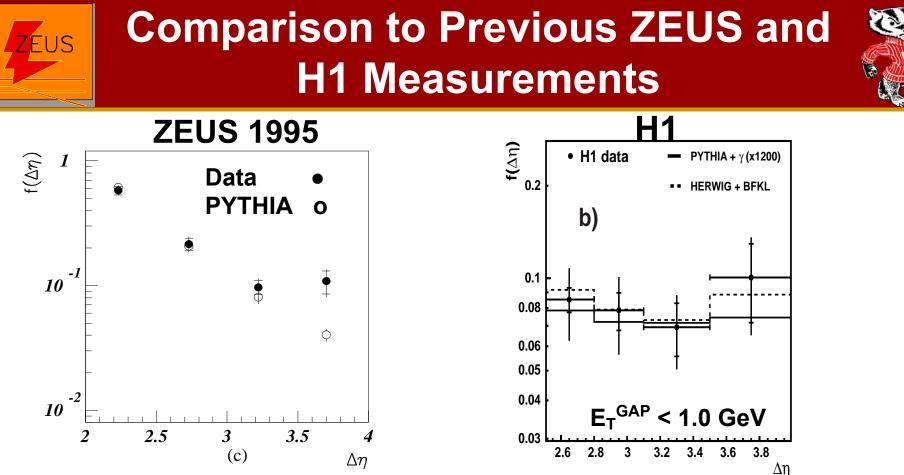


Color-Singlet Exchange e'(k') **e(k)** e(k γ**(q**) Photon Remnant **Rapidity Gap** γ, IP From Lack of **No Color** W[±],Z⁰ **Color Radiation** Connection Proton **P(p)** Remnant P(p)

- 2 Sources of Rapidity Gaps between Jets
 - Color-singlet Exchange
 - Lack of color radiation produces gap
 - Example: Pomeron
 - Color-Non-Singet Exchange
 - Fluctuations in particle multiplicity produces gap
 - Non-diffractive



- Distance between leading and trailing jet centers: $\Delta\eta$
- E_T^{Gap} : Total E_T of jets between leading and trailing jet centers
- Gap Event has small energy in Gap: E_T^{Gap} < E_T^{Cut}
- Gap definition based on E_T better than that based on multiplicity
 - Collinear and infrared safe
 - Gap spans between centers of leading & trailing jets (increased statistics)


The Gap Fraction f(Δη)

- Gap created by multiplicity fluctuations
- f($\Delta \eta$) decreases exponentially with $\Delta \eta$

Patrick Ryan, Univ. of Wisconsin

- ZEUS 1995: Gap Fraction defined by multiplicity
 - Data above Non-Color-Singlet PYTHIA
- H1 2002: Gap Fraction for $E_T^{Gap} < 1.0 \text{ GeV}$
 - Data above NCS MC but Data described by NCS+CS MC
 - 6.6 pb⁻¹ of Lumi

ZEUS

Simulation of Color-Non-Singlet and Color-Singlet MC

- PYTHIA 6.1 & HERWIG 6.1
 - Used to simulate Color-Non-Singlet and Color-Singlet Events
 - Shown to describe γp data
 - Use different hadronization models
 - Direct, Resolved, Color-Singlet MC generated separately
- Color-Non-Singlet MC
 - Resolved MC includes Multi-Parton Interactions (MPIs)
- Color-Singlet (CS) Exchange MC
 - HERWIG: BFKL Pomeron as exchange object
 - Includes MPIs
 - PYTHIA: High-t γ exchange
 - Used to match data only Rapidity Gap not due to photon exchage
 - Does not include MPIs

- Modified Default ZEUS MC parameters
 - Tuning based on JetWeb parameters (Global fit to collider data)
 - Tuned p_T^{Min} to ZEUS E_T^{GAP} distributions (shown later)
- Tuned PYTHIA 6.1
 - Proton PDF: CTEQ 5L (Set 46)
 - Photon PDF: SaS-G 2D

p_T^{Min 1}: p_T of hardest interaction p_T^{Min 2}: p_T of all secondary interactions

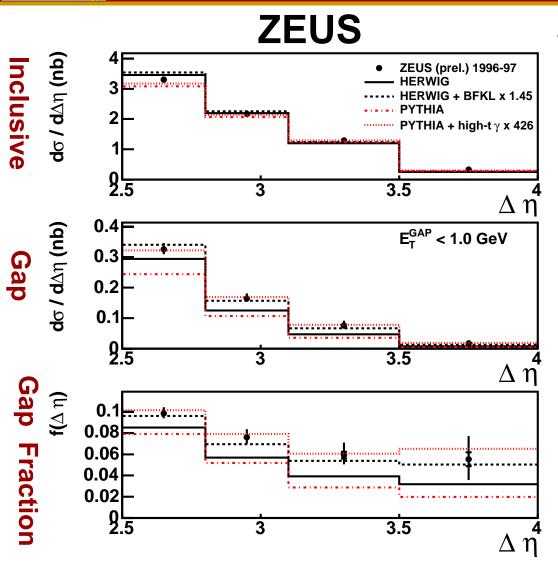
- $p_T^{Min 1} = 1.9 p_T^{Min 2} = 1.7$ (default 2.0 GeV, 1.5 GeV)
- Tuned HERWIG 6.1
 - Proton PDF: CTEQ 5L (Set 46)
 - Photon PDF SaS-G 2D
 - Square of factor to reduce proton radius: 3.0 (default 1.0)
 - Probability of Soft Underlying Event: 0.03 (default 1.0)
 - **P**_T^{MIN1} = 2.7 GeV (default 1.8 GeV)

- Correct data for acceptance: Detector → Hadron level
- Step 1: Dir and Res relative amounts fit to Data: x_γ^{OBS} distribution
 - **PYTHIA Detector Level**
 - 28% Direct
 - 72% Resolved
 - HERWIG Detector Level
 - 44% Direct
 - 56% Resolved
- Step 2: Non-Color Singlet & Color Singlet relative amounts fit to Data: E_{TOT} for E_T^{GAP} < 1.5 GeV

Rapidity Gap Event Selection

ZEUS 1996-97 Data (38 pb ⁻¹)	
Trigger Selection:	
FLT, SLT, and TLT requirements to select dijet photoproduction events	
Clean Photoproduction Sample:	
Reject events having Electron with E _e > 5 GeV AND y _e < 0.85	
$\Sigma p_T / \Sigma \sqrt{E_T} < 2 \text{ GeV}^{1/2}$	
z _{vtx} < 40 cm	0.2 < y _{JB} < 0.85
Dijets with Large Rapidity Separation:	
E _T ^{1,2} > 6.0, 5.0 GeV	
η ^{1,2} < 2.4	$1/2 \eta^1 + \eta^2 < 0.75$
2.5 < η¹ – η² < 4.0 (Gap Definition)	
4 Samples of Gap Events:	
E _T ^{CUT} = 0.5, 1.0, 1.5, 2.0 GeV	
~70,000 Events in Inclusive Sample	

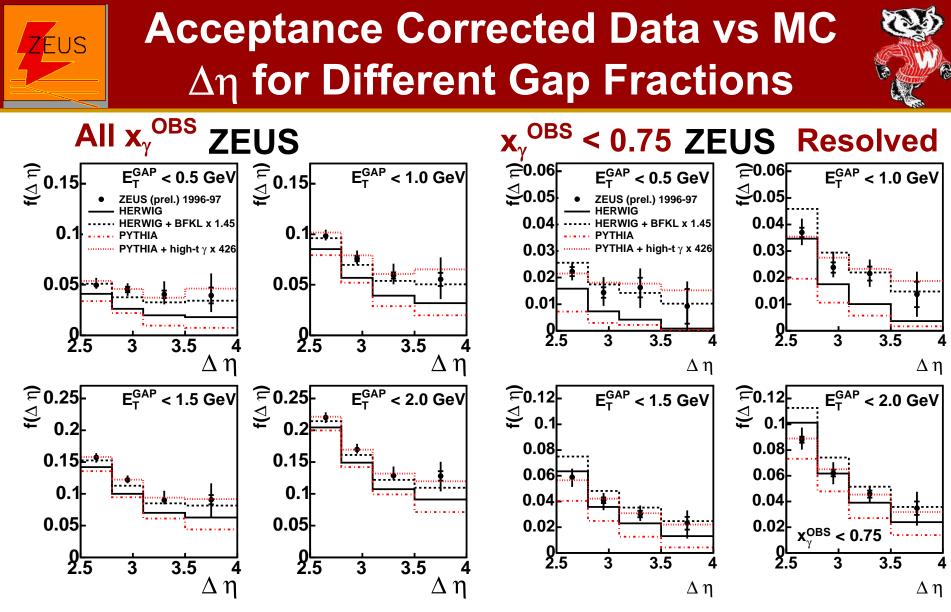
Patrick Ryan, Univ. of Wisconsin


Rapidity Gaps Between Jets in PHP

HERA-LHC Workshop , June 7, 2006 - 10

Acceptance Corrected Data vs MC E_TGap Cross Section ZEUS **Acceptance Correction** 0.3 dơ / dE_T^{GAP} (nb) Average of PYT & HER **Systematic Errors from HER** Difference between HER & PYT values added to systematic 0.25 MCs fit to Data 0.2 χ^2 Minimization **Yield Scale Factors** HER: 1.01*NCS + 1.45*CS PYT: 1.25*NCS + 426*CS 0.15 High CS Scale Factor in PYTHIA due to High-t γ exchange 0.1 Minimization of χ^2 in fit ZEUS (prel.) 1996-97 to Data results in ~3% HERWIG 0.05 HERWIG + BFKL x 1.45 CS CS contribution for both PYTHIA **PYTHIA + high-t** γ x 426 **PYTHIA & HERWIG** 0 2 'n 6 8 10 Δ 12 E_TGAP (GeV)

Acceptance Corrected Data vs MC $\Delta\eta$ Cross Sections

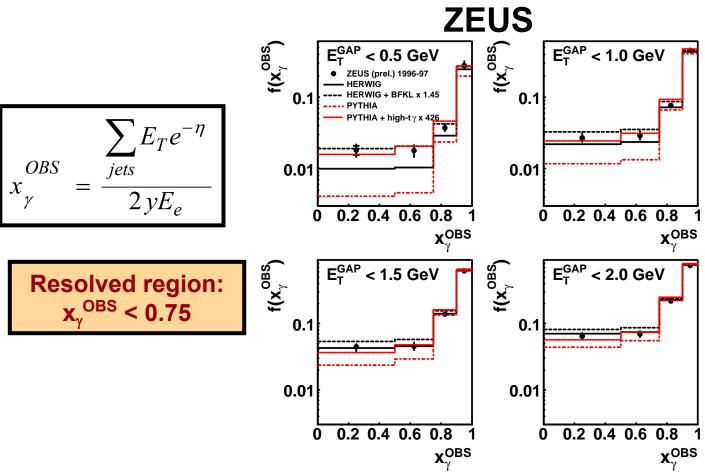

 MC with CS added describes data

Patrick Ryan, Univ. of Wisconsin

FUS

Rapidity Gaps Between Jets in PHP

HERA-LHC Workshop , June 7, 2006 - 12



- MC with CS describes data for entire x, OBS region
- CS contribution in resolved region is 1-2%

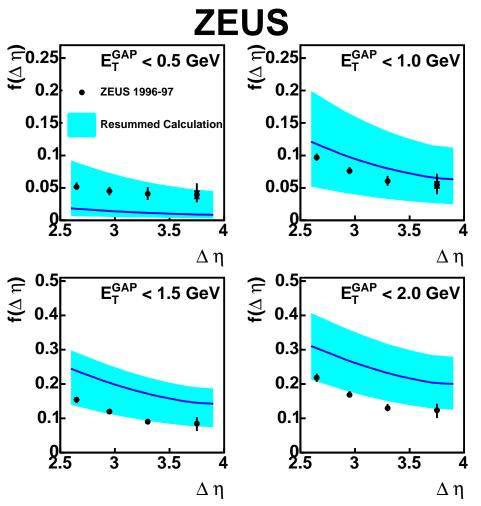
Patrick Ryan, Univ. of Wisconsin

Acceptance Corrected Data vs MC x, ^{OBS} for Different Gap Fractions

- MC with CS describes the Data
- HERWIG agreement remains better than PYTHIA agreement
- PYTHIA agreement in resolved region improved compared to $\Delta\eta$

Patrick Ryan, Univ. of Wisconsin

Rapidity Gaps Between Jets in PHP


HERA-LHC Workshop , June 7, 2006 - 14

Δη Gap Fractions Resummed Calculation

Resummed Calculation

- Seymour & Appleby
- Only calculation available
- Large Errors
- Shape of data described
 - $E_{T}^{Cut} = 0.5$
 - Data above prediction
 - All other E_T^{Cut} values
 - Data below predictions
 - Disagreement increases as E_T^{Cut} increases

Rapidity Gap Between Jets Summary

Conclusions

- Data demonstrate evidence of ~3% Color-Singlet contribution estimated at the cross section level for entire phase space
 - Corresponds to ~1-2% Color-Singlet in resolved region
- Data consistent with published ZEUS and H1 results
- PYTHIA and HERWIG describe data well after the Color-Singlet contribution is added
- In Progress
 - Examine W dependence
 - Explore comparisons with Tevatron
 - Publish paper