Status and startup for physics with ATLAS

Length : ~45 m Radius : ~12 m Weight : ~ 7000 tons Electronic channels : ~ 10⁸ ~ 3000 km of cables

- Tracking (|η|<2.5, B=2T) :
 - Si pixels and strips
 - Transition Radiation Detector (e/π separation)

• Calorimetry (|η|<5) :

- EM : Pb-LAr
- HAD: Fe/scintillator (central), Cu/W-LAr (fwd)

• Muon Spectrometer (|η|<2.7) :

air-core toroids with muon chambers

MAGNETS

Barrel toroid: cool down starting April 2006, first full current excitation end of May

End-cap toroids will go to the pit in August and November 2006

INNER DETECTOR

End of February: barrel SCT inserted into the barrel TRT \rightarrow ready for the installation in the pit in June 2006

Each of 4 Si layer tested: 99.7% of channels fully functional

TRT: will contribute to tracking and to electron/pion separation by detecting transition radiation X-rays in gas mixture with ~ 70% Xe

Two completed end-cap Pixel disks, each with 2.2 M channels

<u>⊼</u> →

One end-cap TRT fully assembled

-

Cosmic muon registered in the barrel TRT in surface clean room

Inner Detector end-caps in the pit in October-November 2006

CALORIMETERS

Barrel calorimeter (EM LAr + Fe/scintillator Tilecal) in final position at Z=0 Cool down of barrel EM calorimeter started (barrel and end-cap LAr calorimeters tested at cold on the surface : <1% of dead channels)

First end-cap calorimeter (EM, HAD LAr, FCAL inside common cryostat plus Tilecal) temporarily moved to final position; second end-cap being assembled in the pit

ATLAS calorimetry cold and fully operational end 2006

MUON SPECTROMETER

Measurement chambers: MDT, CSC (innermost forward) Trigger chamber: RPC (barrel), TGC (end-cap)

Construction completed; now assembly, integration, cosmic ray tests, installation

Barrel chamber installation to be completed end Summer 2006

Spectacular operations ...

The pre-series of final TDAQ system with 8 racks (10% of final dataflow) is now in operation at the pit site

Towards Physics: the 2004 combined test beam

Full "vertical slice" of ATLAS tested on CERN H8 beam line May-November 2004

~ 90 million events collected ~ 4.5 TB of data: e^{\pm} , π^{\pm} 1 \rightarrow 250 GeV μ^{\pm} , π^{\pm} , p up to 350 GeV γ 20-100 GeV B-field (ID) = 0 \rightarrow 1.4 T

Many configurations (e.g. additional material in ID, 25 ns runs, etc.)

End-cap Muon chambers

Towards Physics: cosmics

From ATLAS simulations and measurements in the underground cavern: rate is ~ Hz \rightarrow expect few 10⁶ events in ~ 2 months of data taking (at 30% efficiency)

→ enough for initial shake-down, to catalog problems, to gain operation experience, for detector synchronization, for initial calibration/alignment

Cosmics test for ID

Which detector performance on day one ?

Based on detector construction quality, test-beam results, cosmics, simulation

	Expected performance day 1	Physics samples to improve
ECAL uniformity e/γ scale	~ 1% ~ 2 %	Minimum-bias, $Z \rightarrow ee$ $Z \rightarrow ee$
HCAL uniformity Jet scale events	~ 3 % < 10%	Single pions, QCD jets Z (\rightarrow II) +1j, W \rightarrow jj in tt
Tracking alignment →µm	20-200 μm in Rφ ?	Generic tracks, isolated μ , Z

Ultimate statistical precision achievable after few weeks of operation. Then face systematics....

E.g. : tracker alignment :

100 μ m (1 month) \rightarrow 20 μ m (4 months) \rightarrow 5 μ m (1 year) ?

In the new physics era! The first 10-100 pb⁻¹

Understand/calibrate detector and trigger in situ using "candles" samples

- e.g. Z \rightarrow ee, $\mu\mu$ tracker, ECAL, muon chamber calibration and alignment, etc.
 - tt \rightarrow blv bjj jet scale from W \rightarrow jj, b-tag performance, etc.

Understand basic SM physics at $\sqrt{s} = 14 \text{ TeV}$

- measure cross-sections for e.g. minimum bias, W, Z, tt, QCD jets (to ~20 %),
- start to tune Monte CarOl
- measure top mass (to ~ 7 GeV ?) → give feedback on detector performance Note : statistical error negligible with O(10 pb⁻¹)

Prepare the road to discovery:

- measure backgrounds to New Physics : e.g. tt and W/Z+ jets (omnipresent ...)
- Iook at specific "control samples" for the individual channels:
- e.g. ttjj with j \neq b "calibrates" ttbb irreducible background to ttH \rightarrow ttbb

Look for New Physics potentially accessible in first year(s) e.g. Z', SUSY, Higgs ?

How many events per experiment at the beginning?

Knowledge of SM physics on day 1?

√s (GeV)

Lot of progress with NLO matrix element MC interfaced to parton shower MC (MC@ NLO, AlpGen,..)

Minimum Bias

Not exactly what the LHC was built for! But.....

- Physics: measure dN/dη|η=0
 - Compare to NSD data from SppS and Tevatron
- MB samples for pile-up studies
 - Calorimeter
 - Physics analyses
- Overlap with UE
 - analyses eg VBF, Jets...
- Demonstrate that ATLAS is operational
- Intercalibrate detector elements
 - Uniform events
- Alignment

- Event characteristics
 - Non-single diffractive~nondiffractive inelastic
 - Soft tracks: p_T^{peak}~250MeV
 - Approx flat distribution in η to |η|~3 and in φ
 - N_{ch}~30; |η|<2.5
- Trigger rates
 - σ~70mb (NSD!)
 - R~700kHz @ L=10³¹cm⁻²s⁻¹
- For dN/dη require ~10k

 For UE need ~20M MB events to get some with leading jets P_T~30GeV

Tracking: Startup-Initial Alignment

- Very first alignment based on:
 - Mechanical precision
 - Detailed survey data
 - Cosmics data (SR1/Pit)
 - Minimum bias events and inclusive bb

- Studies indicate good ε after initial alignment
 - Precision will need Zs and resonances to fix energy scales, constrain twists, etc...

Tracking in MB events

- Acceptance limited in η and p_T
- Rapidity coverage
 - Tracking covers $|\eta|$ <2.5
- p_T problem
 - Need to extrapolate by ~x2
 - Need to understand low p_T charge track reconstruction

What is the momentum limit?

- Tracker is in principle sensitive to soft tracks $P_{T} = 400 \text{ MeV} \text{tracks reach end of TRT}$ $P_{T} = 150 \text{ MeV} \text{tracks reach last SCT layer}$ $P_{T} = 50 \text{ MeV} \text{tracks reach all Pixel layers}$
 - ightarrow Do not need to run with low field

PDFs

In most of relevant x regions accessible at LHC, HERA data are important source of information in PDF determinations (low-x sea and gluon PDFs)

- HERA now in second stage of operation (HERA-II)
 - substantial increase in luminosity
 - possibilities for new measurements
- HERA-II projection: improvement to high-x PDF uncertainties
- \Rightarrow relevant for high-scale $\,$ physics at the LHC $\,$
- $\rightarrow\,$ where we expect new physics !!

-significant improvement to <u>valence-quark</u> uncertainties over <u>all-x</u>

-significant improvement to sea and gluon uncertainties at mid-to-high-x

-little visible improvement to sea and gluon uncertainties at low-x

Gluon fractional error

LHC Kinematic regime

How can we constrain PDF's at LHC?

$W \rightarrow ev$ rapidity distributions

$$x_{1,2} = \frac{M}{\sqrt{s}} \exp(\pm y) \implies \text{W production over } |y| < 2.5 \text{ at LHC}$$

involves $10^{-4} < x_{1,2} < 0.1$
 \Rightarrow region dominated by $q \rightarrow qq$

HERWIG MC Simulations with NLO Corrections

At y=0 the total PDF uncertainty is ~ ±5.2% from ZEUS-S ~ ±3.6% from MRST01E ~ ±8.7% from CTEQ6.1M ZEUS-S to MRST01E central value difference ~5% ZEUS-S to CTEQ6.1 central value difference ~3.5% GOAL: syst. exp. error ~4%

Effect of including ATLAS data on PDF fits

0.35

Simulate real experimental conditions:

Generate 1M "data" sample with **CTEQ6.1 PDF** through ATLFAST detector simulation and then include this *pseudo-data* (with imposed 4% error) in the global **ZEUS PDF** fit (with Det.->Gen. level correction).

Central value of ZEUS-PDF prediction shifts and uncertainty is reduced:

Systematics (e.g. e^{\pm} acceptance vs η) can be controlled to few % with Z \rightarrow ee (~ 30000 events for 100 pb⁻¹)

Top events to calibrate ATLAS!

Large ttbar production cross section at LHC

Effect of large \sqrt{s} at LHC \rightarrow threshold for ttbar production at lower

S: MC @ NLO

B : AlpGen x 2 to account for W+3,5 partons (pessimistic)

Expect ~ 100 events inside mass peak with only 30 pb⁻¹

 \rightarrow top signal observable in early days with no b-tagging and simple analysis

 \rightarrow W+jets background can be understood with MC+data (Z+jets)

tt excellent sample to:

• commission b-tagging, set jet E-scale using $W \rightarrow jj$ peak and MW constraint

- understand detector performance and reconstruction tools (e, μ, jets, b-jets, missing E_T, ..)
- understand / tune MC generators using e.g. p_T spectra

Early discovery: Z' with SM-like couplings

Mass	Expected events for 1 fb ⁻¹ (after all cuts)	∫L dt needed for discovery (corresponds to 10 observed evts)	Z'→ee SSM
1 TeV	~ 160	~ 70 pb⁻¹	
1.5 TeV	~ 30	~ 300 pb ⁻¹	
2 TeV	~ 7	∼ 1.5 fb ⁻¹	

If SUSY stabilizes $m_H \rightarrow at \text{ TeV} \rightarrow could be found quickly$

thanks to:

■ large $\tilde{q}\tilde{q}, \tilde{q}\tilde{g}, \tilde{g}\tilde{g}$ cross-section $\rightarrow \approx 10$ events/day at 10^{32} with $m(\tilde{q}, \tilde{g}) \sim 1$ TeV

 spectacular signatures (many jets, leptons, missing transverse energy)

With 100 (good) pb⁻¹ LHC can say if SUSY accessible to 1 TeV linear collider

But : it will take a lot time to understand detectors and backgrounds ...

Main backgrounds to SUSY searches in jets + E_T^{miss} topology (one of the most "dirty" signatures ...) :

- W/Z + jets with $Z \rightarrow \nu \nu$, $W \rightarrow \tau \nu$, tt; etc.
- QCD multijet events with fake E_T^{miss} from jet mis-measurements (calorimeter resolution and non-compensation, cracks, ...)
- cosmics, beam-halo, detector problems overlapped with high- p_T triggers,

es) and MC

Background process (examples)	Cu. (exam
Z ($\rightarrow vv$) + jets	Z (\rightarrow
W ($\rightarrow \tau v$) + jets	W (
tt \rightarrow blvbjj	tt \rightarrow Div Div
QCD multijets	lower E _T sar

Understanding E^{miss} spectrum:

one of most crucial experimental issues for SUSY searches at hadron colliders. Note: can also use final states with leptons (cleaner ...)

Early discovery: Higgs ?

Each channel contributes ~ 2σ to total significance \rightarrow observation of all channels important to extract convincing signal in first year(s)

3 channels are complementary \rightarrow robustness:

- different production and decay modes
- different backgrounds
- different detector/performance requirements:
 - -- ECAL crucial for H $\rightarrow \gamma \gamma$ (in particular response uniformity) : $\sigma/m \sim 1\%$ needed
 - -- b-tagging crucial for ttH : 4 b-tagged jets needed to reduce combinatorics
 - -- efficient jet reconstruction over $|\eta|$ < 5 crucial for qqH \rightarrow qq $\tau\tau$.

forward jet tag and central jet veto needed against background

Note : -- all require "low" trigger thresholds

E.g. ttH analysis cuts : p_T (I) > 20 GeV, p_T (jets) > 15-30 GeV

-- all require very good understanding (1-10%) of backgrounds

Conclusions

- Main goals for 2007:
 - complete installation by February 2007
 - deliver first collisions in Summer 2007
- Emphasis now on integration, installation, commissioning Unprecedented complexity, technology and performance
- With first data measure and understand:
 - detector performance in situ ⇔ physics
 - particle multiplicity in minimum bias
 - QCD jets (>10³ events with E_T (j) > 1 TeV with 100 pb⁻¹) and UE
 - W,Z cross-sections: to 15% with <10 pb⁻¹ and 10% with 100 pb⁻¹?
 - top signal with ~ 30 pb⁻¹
 - $\sigma(tt)$ to 20% and M_{top} to 7-10 GeV with 100 pb⁻¹ ?
 - PDF (low-x gluons !) with W/Z (O(100) pb⁻¹ ?)
 - first tuning of MC (MB, UE, tt, W/Z+jets, QCD jets,...)

And, later on

The LHC will explore in detail the highly-motivated TeV-scale with a direct discovery potential up to $m \approx 5-6$ TeV

- if New Physics is there, the LHC will find it
- it will say the final word about the SM Higgs mechanism and many TeV-scale predictions
- it may add crucial pieces to our knowledge of fundamental physics
 → impact also on astroparticle physics and cosmology
- It will tell us which are the right questions to ask, and how to go on

