Leading Protons measured at $-220 m$ \& $-147 m$ from the CMS

Diffraction at TOTEM

TOTEM Collaboration

G. Anellic, G. Antchevc ${ }^{\text {, V. Avatib }}$, V. Berardia, U. Bottiglih, M. Bozzod, E. Brückene, A. Buzzod ${ }^{\text {d }}$, M. Calicchio ${ }^{\text {a }}$, F. Capurrod,M.G. Catanesia, M.A. Cioccih, S. Cuneod, C. Da Viák, M. Deilec , E. Dimovasilic, K. Eggertc ${ }^{\text {c }}$, F. Ferrod, F. Garciae, A. Giacherod, J.P. Guillaud', J. Hasik, F. Haugc, J. Heinoe, T. Hildene, P. Jarronc, J. Kalliopuskae, J. Kasparg, J. Kempaf, C. Kenneym, A. Kok ${ }^{\text {k }}$, V. Kundratg, K. Kurvinene, S. Lamih, G. Latino ${ }^{\text {h }}$, R. Lauhakangase, E. Lippmaai, J. Lippmaae, M. Lokajicekg, M. LoVetered, J. Lämsäe, D. Macinac ${ }^{\text {c }}$, M. Macrid, M. Meuccih, S. Minutolid, A. Morellid, E. Mulast, P. Musicod, M. Negrid, H. Niewiadomskic, E. Noschisć, E. Oliverih, F. Oljemarke, R. Oravae, M. Oriunnoć, K. Österberge, R. Paolettih, S. Parkern, E. Radermacherc, E.

Radicionia, E. Robuttid, L. Ropelewskic, G. Ruggieroc , A. Rummeli, H. Saarikkoe, G. Sanguinettih, A. Santronid, S. Saramad ${ }^{\text {c }}$, F. Saulic, A. Scribano ${ }^{\text {h }}$, G. Setted ${ }^{\text {d }}$ J. Smotlacha ${ }^{\text {g }, ~ W . ~ S n o e y s ~}{ }^{c}$, F. Spinellah, C. Taylorb, F. Torpi, A. Trummali, N. Turinih, N. van Remortele, S. Watts ${ }^{\text {k }, ~ L . ~ V e r a r d o d ~}{ }^{\text {d }}$ J. Whitmorej (82)
(5m Totem slice/person!)
a INFN Sezione di Bari and Politecnico di Bari, Bari, Italy
${ }^{\text {b }}$ Case Western Reserve University, Dept. of Physics, Cleveland, OH, USA
${ }^{\text {c }}$ CERN, Geneva, Switzerland
${ }^{d}$ Università di Genova and Sezione INFN, Genova, Italy
${ }^{e}$ Helsinki Institute of Physics HIP and Department of Physical Sciences, University of Helsinki, Helsinki, Finland ${ }^{\dagger}$ Warsaw University of Technology, Fac. of Civil Engineering, Mechanics and Petrochemistry, Plock, Poland ${ }^{g}$ Academy of Sciences of the Czech Republic (ASCR), Institute of Physics, Praha, Republic Czech
${ }^{h}$ Università di Siena and Sezione INFN Pisa, Italy
${ }^{i}$ Estonian Academy of Sciences, Tallinn, Estonia
j Penn State University, Dept. of Physics, University Park, PA, USA
k Brunel University, Uxbridge, UK LAPP Annecy (France)
${ }^{n}$ University of Hawaii (USA) (14)

Leading Proton Detection-An Example

TOTEM measurements

1. Total pp cross section with a precision of $\approx 1 \%$
2. Elastic pp scattering:
$10^{-3}<t=(p \theta)^{2}<10 \mathrm{GeV}^{2}$
3. Leading particles:
$2 \times 10^{-3}<\xi<2 \times 10^{-1}$
Particle flows, rap gaps:
$3.1<\eta<4.7$ and $5.3<\eta<6.5$
\Rightarrow Investigate diffractive \& forward phenomena together with CMS.

Note: Rapidity coverage could be further improved by veto counters at $\pm 60 \mathrm{~m}$ to $\pm 140 \mathrm{~m}$, microstations at 19 m etc.

LHC Experiments: $p_{T}-\eta$ coverage

CMS fwd calorimetry up to $|\eta| \approx 5+$ Castor + ZDC

The base line LHC experiments will cover the central rapidity region. TOTEM $\oplus C M S$ will complement the coverage in the forward region.

Elastic Scattering: $d \sigma / d t$

Elastic Scattering at small - \dagger

$$
\frac{d \sigma}{d t} \approx A \mathrm{e}^{-B|t|}
$$

deviations from single exponential slope expected
nominal Totem run scenario allows to probe the inteference region

- for the required precision in $d \sigma /\left.d t\right|_{t=0}$, moderate $-t_{\text {min }}\left(\approx 10^{-2} \mathrm{GeV}^{2}\right)$ seems sufficient
- at lower - t-values learn about the (non-exponential) behaviour \& get better extrapolation

Elastic Scattering - Resolution

ϕ-resolution (one arm)

Collinearity test for tracks in both arms to reduce bacgrounds \& tag CD

Effect	Uncertainty in Extrapolation	
Resolution, statistics (10h@1028):	10^{7} events	0.07%
Beam energy uncertainty	0.05%	0.1%
Beam -- detector alignment	$20 \mu \mathrm{~m}$	0.08%
Angular spread	$0.2 \mu \mathrm{rad}$	0.1%
Total		0.2%

Measurement error to be smaller than physics effects due to non-exponential cross-section (0.5 \%).

TOTAL \& DIFFRACTIVE CROSS SECTIONS $\sigma_{\text {tot }}$ and $\sigma^{S D}$

total pp cross section

-measurement of $\sigma_{\text {tot }}$ to 1% will distinguish between different models
single diffractive cross section

-measurement of $\sigma^{S D}$ to 10% allows tests of diffractive models

$$
\begin{aligned}
& \sigma_{\text {tot }} \propto(\operatorname{lns})^{\varepsilon} \text { as } s \rightarrow \infty \\
& \varepsilon=0,1,2, \text { or }-0.08 ? ?
\end{aligned}
$$

Acceptance in ξ \& - \dagger vs. Run Scenario

Acceptance of leading protons produced in Central Diffractive events (Phojet)

$\beta^{*}=90 \mathrm{~m}: \quad C D$ protons detected by their scattering angle in the vertical RP detectors, $-t \geq 3 \times 10^{-2} \mathrm{GeV}^{2}$, almost independently of $\xi, \approx 50 \%$ of CD protons seen (standard LHC injection optics, p-to-p in vertical plane \Rightarrow
horizontal displacement proportional to $\xi \& v \times$ positon/CMS)
$\beta^{\star}=1540 \mathrm{~m}:-\dagger \geq 1 \times 10^{-3} \mathrm{GeV}^{2}, \approx 85 \%$ of $C D$ protons seen (very low $-\dagger$ reach)
$\beta^{*}=2 \mathrm{~m}: \quad C D$ protons seen in the horizontal detectors, only, $0.02<\xi<0.1,-\dagger \geq 2 \mathrm{GeV}^{2}$, poor acceptance (high $-t$) (420 m RP's with $\xi_{\min } \approx 0.002$ would help!)

Acceptance in $\xi \& M_{x}$ vs. Run Scenario

90 m optics: $\approx 50 \%$ of $C D$ protons seen, $\mathcal{L} \leq 2 \times 10^{30} \mathrm{~cm}^{-2} s^{-1}$, i.e. $\approx 1 \mathrm{pb}^{-1}$ in a few days.

ξ

For hard diffraction need nominal optics: diffractive protons with $\xi \geq 0.02$ (0.002 at 420 m location) seen, $\mathcal{L}=10^{32}-10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ yields $1-10 \mathrm{fb}^{-1}$ in a year.

90 m optics: ξ resolution

Resolution in ξ is dominated by: (1) vertex position ($30 \mu \mathrm{~m}$ precision by $C M S$ assumed), (2) beam position ($50 \mu \mathrm{~m}$ assumed)

$$
\times 10^{-3}
$$

Including all uncertainties
.......... Vx position: $30 \mu \mathrm{~m}$ assumed
.......... Beam position: $50 \mu \mathrm{~m}$ assumed

CED Mass Measurement at 400 m ...

Mass resolution vs. central mass assuming $\Delta x_{F} / x_{F}=10^{-4}$
$\approx 65 \%$ of the data
$20 \mathrm{GeV}<M_{x}<160 \mathrm{GeV}$
($M_{x_{\max }}$ determined by the aperture of
the last dipole, B11,
$M_{\text {xmin }}$ by the minimum deflection $=5 \mathrm{~mm}$)
Workshop on Diffractive Physics
4. - 8. February 2002

Rio de Janeiro, Brazil

TOTEM $\oplus C M S$ Physics Reach

Run Scenario	$\begin{aligned} & \beta^{\star} \\ & {[\mathrm{m}]} \end{aligned}$	[no.of bunches]	$N \times 10^{11}$ [no.of protons per bunch]	$\begin{gathered} \mathcal{L} \\ {\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]} \end{gathered}$	Physics Reach
1	1540	156	1.0	2×10^{29}	- elastics, $\sigma_{\text {tot }}$ - soft diffr.
2	90	156	1.0	3×10^{30}	- (semi-) hard diffraction
3	18	$936 \rightarrow 2808$	1.0	1×10^{32}	- hard diffr. - low-x
4	≤ 2	$936 \rightarrow 2808$	1.0	$10^{32} \rightarrow 10^{33}$	- CED Higgs - beyond SM

Leading protons: Roman Pots

Measurement of very small p scattering angles (few $\mu \mathrm{rad}$):
Leading proton detectors in RPs approach beam to $10 \sigma+0.5 \mathrm{~mm} \approx 1.5 \mathrm{~mm}$

Roman Pots

- Preparation on Surface January-October 2006
- Roman Pot equipment assembled on surface without detector
- UHV Test of the system
- Commissioning of the full system on surface (detectors, cooling, vacuum)
- Relative alignment by metrology of the moving components Calibration of motors and encoders
- Test beam on a fixed target (only for one or two units)
- Underground access through the PM56 shaft October-February 2007
- Installation of the cooling system
- Installation at the defined locations along the tunnel
- Check of the cabling (motors, controls interlocks)
- Vacuum Chambers connection
- Alignment on the beam
- Roman Pot Commissioning
- After the LHC commissioning and just before the pilot runs
- Installation of the detectors assembly in the pots
- Connection to the patch panels and to the cooling plant

T1 Telescope

- 5 planes with measurement of three coordinates per plane.
- 3 degrees rotation and overlap between adjacent planes
- Primary vertex reconstruction
- Trigger with CSC wires

T2 Telescope

10 detector planes on each side of IP

READOUT STRUCTURE

512 strips (width $80 \mu \mathrm{~m}$, pitch of $400 \mu \mathrm{~m}$)

VFAT- fully digital readout (no analog information out)

