Available online at www.sciencedirect.com

sc:ENcs@DIRECT' NUCLEARIZ]
PHYSICS

ELSEVIER Nuclear Physics B 746 (2006) 1-14

The effect of NLO conformal spins in azimuthal angle
decorrelation of jet pairs

Agustin Sabio Vera

Physics Department, Theory Division, CERN, CH-1211 Geneva 23, Switzerland
Received 1 March 2006; accepted 11 April 2006
Available online 4 May 2006

Abstract

Azimuthal angle decorrelation in inclusive dijet cross sections is studied analytically to take into account
the next-to-leading corrections to the BFKL kernel while keeping the jet vertices at leading order. The spec-
tral representation on the basis of leading order eigenfunctions is generalized to include the dependence
on conformal spins. With this procedure running coupling effects and angular dependences are both in-
cluded. It is shown how the angular decorrelation for jets with a wide relative separation in rapidity largely
decreases at this higher order in the resummation.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

Among the many relevant questions still open in quantum chromodynamics a very interesting
one is how to describe scattering amplitudes in the so-called Regge limit. In Regge asymptotic
the center-of-mass energy, s, is much larger than all other Mandelstam invariants and mass scales
present in the process under investigation. It is possible to perturbatively keep track of the differ-
ent contributions to the amplitude if some hard scale is present so that the strong coupling remains
small. It is then needed to resum logarithmically enhanced contributions of the form (cs Ins)” to
all orders. This is achieved using the leading-logarithmic (LL) Balistky—Fadin—Kuraev—Lipatov
(BFKL) evolution equation [1].

The BFKL approach predicts a power-like rise in s of total cross sections. A lot of attention
has been given to the search for BFKL effects in deep inelastic scattering (DIS) due to the rapid
growth of structure functions at small values of Bjorken x. However, the golden process where

E-mail address: agustin.sabio.vera@cern.ch (A. Sabio Vera).

0550-3213/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.nuclphysb.2006.04.004


mailto:agustin.sabio.vera@cern.ch
http://dx.doi.org/10.1016/j.nuclphysb.2006.04.004

2 A. Sabio Vera / Nuclear Physics B 746 (2006) 1-14

the resummation of Ins is most important is the total cross section of two photons with large and
similar virtualities. In this configuration the small x resummation, which includes ordering in
rapidity and not in transverse scales, should be the dominant contribution to the scattering. This
is not necessarily the case in DIS where ordering in k; is important given that parton evolution
takes place between an object with large transverse size, the proton, and a small highly virtual
photon.

Observables where BFKL effects should prevail then require of enough energy to build up
the parton evolution, and the presence of two large and similar transverse scales. In this work an
example of this kind is investigated in detail by analytic means: the inclusive hadroproduction of
two jets with large and similar transverse momenta and a big relative separation in rapidity, the
so-called Mueller—Navelet jets. When Y, the distance in rapidity between the most forward and
backward jets, is not large a fixed order perturbative analysis should be enough to describe the
cross section but when it increases a BFKL resummation of (¢, Y)” terms is needed.

Mueller—Navelet jets were first proposed in Ref. [2] as a clean configuration to look for BFKL
effects at hadron colliders. A typical power-like rise for the partonic cross section was predicted
in agreement with the value of the asymptotic LL hard pomeron intercept. However, at hadronic
level, forward and backward jets are produced in a region of fast falling of the parton distribu-
tions, reducing the rise of the cross section. A way to make small x resummation effects more
explicit is to look into the azimuthal angle decorrelation of the pair of jets. The relevant sub-
process is parton + parton — jet + jet + any number of soft emissions inside the rapidity
interval separating the two jets. BFKL enhances soft real emission as Y increases reducing in
this way the amount of angular correlation originally present in the back-to-back in transverse
plane Born configuration. The LL prediction for this azimuthal dependence was first investigated
in Ref. [3].

The results at LL are known to overestimate the rate of decorrelation and to lie quite far from
the experimental data [4] as obtained from the Tevatron and subleading higher order effects have
been called for an explanation of this discrepancy. Running coupling effects and kinematic con-
straints have been considered in Ref. [5]. In the present work the main target is to analytically
understand how to include the a (o Y)" next-to-leading logarithmic (NLL) corrections to the
BFKL kernel [6]. The effects of this kernel were numerically investigated using an implementa-
tion [7] of the NLL iterative solution proposed in Ref. [8] (different reviews can be found in [9]).
It is left for future analysis the inclusion of the next-to-leading order (NLO) jet vertex [10], the
investigation of more convergent versions of the kernel [11] and a study of parton distributions
effects in order to make reliable phenomenological predictions at a hadron collider. Mueller—
Navelet jets should be an important test of our understanding of small x resummation to be
performed at the large hadron collider at CERN.

After this brief introduction, in Section 2 the normalization for the gluon Green’s function is
indicated together with the formulae for the partonic cross section. Then the operator formalism
suggested by Ivanov and Papa in Ref. [12] is extended to introduce angular dependences. The
form of the NLL kernel for all conformal spins calculated by Kotikov and Lipatov in Ref. [13] is
also discussed. Towards the end of the section a compact expression for the angular differential
cross section which includes the NLL contributions is derived. In Section 3 the numerical study of
the previous formulz is discussed in detail. Finally, several conclusions are drawn and different
lines for future research highlighted.
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2. Calculation of the dijet partonic cross section

As indicated in the Introduction, in this analysis the object of interest is the partonic cross
section parton + parton — jet + jet 4 soft emission, with the two jets having transverse momenta
g1 and g» and being produced at a large relative rapidity separation Y. This can be related to the
external hadrons by its approximate relation to the longitudinal momentum fractions carried by
the jets, i.e., Y ~ Inxjxos/ 1/q%q%, and a convolution with parton distribution functions whose
analysis is left for a future work. In the present framework the resummed differential partonic

cross section for the particular case of gluon—gluon scattering is
dé 7@} f(@1.42.Y)
d*q1d*qy 2 a4

, (D

with the usual notation &g = oy N /7. One can now introduce the Mellin transform of the BFKL
gluon Green’s function in rapidity space:

5 o dow oY s o
f(CI1,612,Y)=f—2 - fu(q1,492). (2)
1

The normalization for the BFKL integral equation, including for simplicity only the LL terms,
then reads
-

2 > o
97 fo(q1,92) > 3)

(G — k)2 K2+ (G — k)?
As it is well known, including the angular dependence on the transverse plane of g1 and g3,
the LL solution to Eq. (3) can be written as

wfw(@1,32) =8P (G — §2) + a; f (fw(ié, G) —
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where the eigenvalue of the LL kernel,
=20 — (v )y (L v &)
V)= — — Vv — ) - ) —

Xxoln, 2 l 2 2 1 2 s

is expressed in terms of the logarithmic derivative of the Euler gamma function. As it stands
the n variable corresponds to a Fourier transform in the angular sector. A more sophisticated
interpretation arises if Eq. (3) is considered for non-zero momentum transfer (see, e.g., [14]). In
this case, if a representation in the complex plane for the transverse momenta of the form g =
gx +iqy is introduced, it can be shown how the BFKL equation corresponds to a Schrodinger-
like equation with a holomorphically separable Hamiltonian where —iY is the time variable.
Both the holomorphic and antiholomorphic sectors in the Hamiltonian are invariant under spin
zero Mobius transformations with eigenfunctions carrying a conformal weight of the form y =
% +iv + 7. In the principal series of the unitary representation v is real and |n| the integer
conformal spin [15].

The partonic cross section is obtained by integration over the phase space of the two emitted
gluons together with some general jet vertices, i.e.

dé

& (s Y, pis) z/dzélfdzéz Pjer, (él’p%)¢jet2(527p§)m- (6)
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—i—ozACD(l) + ---, only leading-

In the perturbative expansion of these jet vertices, Pjer, = et

order terms are kept:
(V] 2 2
(pjet (q P,) 9(6] _pi)’ @)

where pi corresponds to a resolution scale for the transverse momentum of the gluon jet. In this
way a full NLO accuracy is not achieved but it is possible to pin down those effects stemming
from the gluon Green’s function. To extend this analysis it would be needed to calculate the
Mellin transform of the NLO jet vertices in Ref. [10] where the definition of a jet is much more
involved than here. Therefore one can proceed and write

»© »©

(‘]1 p?) @) (G2, p3)

> t 1 t 2 - -

6(as. Y, pisy) fd%/dz Pt J”q f@G1,42,Y). 8)
2

At this stage it is very convenient to recall the work of Ref. [12] and to introduce the following
transverse momenta operator representation:

_]Ct

q1gi) = agilg:) )
with the normalization
(@11132) =82 @G — 3. (10)
In this notation the BFKL equation simply reads
(—K)fo=1, (11)

where the kernel has the expansion
K =a;Ko+a’Ky+---. (12)
To NLO accuracy this implies that the solution can be written as
fo=(0—a;Ko) ™" + & — a;Ko) ' Ki(w — &Ko)~ +0O(&7). (13)

The next step is to define a basis on which to express the cross section. To generalize the study
in Ref. [12] this basis should carry not only the dependence on the modulus of the transverse
momenta but also the dependence on their angle on the transverse plane:

: 1

s b oviv=d e 14
<q|v,n>—nﬁ(q) e, (14)

The projection {n, v|g) would be the complex conjugate of the previous expression. This basis
has been chosen such that it is orthonormal:

(' VN, n) =8W—v)s,,. (15)

The action of the NLO kernel on this basis, which was calculated in Ref. [13], contains non-
diagonal terms and can be written as

Klv,n) = { asxo(Inl, v) + a2 xi(Inl, v)

0 0
+ oy %[ZXOOM v) (15 —|—logy,2> + <iﬁxo(|n|, U))“W,n), (16)
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where, from now on, &, stands for o (uz), the coupling evaluated at the renormalization point @
in the MS scheme. The first line of Eq. (16) corresponds to the scale invariant sector of the kernel.
The function x; for a general conformal spin reads

x1(n,y) =Sxon, y) + 4“(3)— %xo(n,y)

1
+ Z[W(y + g) + w“(1 —y+ g) ~20(n.y) =29 (n. 1 - y)}

m2cos(my) ne\ 243y(1—y)
_ 3 14+ —=)|——"— |80
4sin2(ny>(1—2y){[ +( * ><3 2y><1+2y)]

ny y(—vy)
- (1+N_3)2<3—2y)<1+2y>3”2}' a7

The definitions S = (4 — 72 + 5B80/N¢)/12, and By = (11N — 2n)/3, have been used. The
function ¢ can be found in Ref. [13] and reads

o0 _1)(k+1)

( : ,
¢(n,y>=27n<w k+n+1)—y'(k+1)
k=0k+)’+§

+ (=D k+n+1)+ 'K+ 1)

+1//(k+1)—1ﬁ(k:—n+l)>’ (18)
k+ Yy + >
with
1
48'(y) w’(%) —w’(%) (19)

In this basis terms with derivatives are associated to the running of the coupling [16], this is
the case in the second line of Eq. (16). In particular, the part containing i =" d , which breaks the
v — —v symmetry, will be shown to give a zero contribution to the cross sectlon when pl = Pz-
It will also be shown how the term with i Xoaiu mixes in a non-trivial way the Green’s function
with the jet vertices.

To represent the cross section in the present formalism the starting point is to project the jet
vertices on the basis in Eq. (14):

LD (G D) 1 vl
/quMT(q|v,n) \/_( ) (p2) é(Sn,OECI(V)(Sn,U (20)

The c>(v) projection of <Dj(et)2 on (n,v|g) is the complex conjugate of (20) with pf being

replaced by p%. The corresponding inverse relations are

o (q =T
P @) _ 5 / dve1(Wdnotn. vid). @)
n=—00__
»© <
(q &
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The cross section can then be rewritten as

Ol
(aSaY p] 2 2 Z /dv / dv' Cl(V)CZ(V )81,00, .0

-
n,n'=—00 "

x / 29 Y, vl fol, 1), (23)
2mi

Making use of the operator representation in Eq. (13), the action of the kernel in Eq. (16) and
integration by parts, & can be expressed as

2
6 (s, Y, pf’z) dv e®X0UnY ¢ ()Y e) (1)8,.0
n=—00__
Bo
1 2y — 1
{ i [m(lnl )+ 20 (1og()
i 0 c1(v) i o0
——Ilo 24
+5amtog( 20 4 2 Yol | 24
For the LO jet vertices the logarithmic derivative in Eq. (24) explicitly reads
8. () - 1
—i—1 =1 —_— 25
(o) =i - @

The angular differential cross section can be calculated considering the following representa-
tion of the ccy product:

1 1 p? d
c1()ca(v)8y0 = — <—;> f 2¢ "o, (26)
2./ pip3 (z +vI)\p3 T

with ¢ = 01 — 6, — . Therefore, in the case where the two resolution momenta are equal, p% =
p% = p?, the angular differential cross section can be expressed as

o0

A - o
dé (a5, Y, p?) _ & Z L ing / gy Fsxolnmy 1
d¢ ap? = 2w G+vd)
—00
Po
1+a Y x1(|n| v)— W}(o(|n| v)

><<210 <p—2>+—1 )]} 27)
=2 G+v) /1)

The term proportional to 20 jp Eq. (24) gives no contribution after integration as it is an odd
function in v. Within NLO accuracy there is freedom to exponentiate the integrand of this result.
In this work this is done both for the scale invariant and for the scale dependent terms, in close
resemblance with the property of reggeization. Furthermore, renormalization group improved
perturbation theory is called for to introduce the replacement

2
& — ‘34’?3 log<p >—>5zs(p2). (28)
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In this way the differential distribution can be conveniently rewritten as

dé (a5, Y, p?)  mal ind
= Cu(Y 29
7o 2 3n Z e, (Y), (29)
with
0o @ (PIY (Il )+ (pP) (i (Inlv)— B K91 ),
dv e (g7
()= | — 1 . (30)
27 (Z + v2)
—00

Different interesting observables can be constructed with these coefficients and they will be
studied in detail in the next section. Due to the large and negative, with respect to the LL terms,
size of the NLL corrections it will turn out that the exponentiated form in Eq. (30) is mandatory
in order to reach convergent results. This is discussed below.

3. Analysis of convergence and study of observables

To investigate the properties of the different parts of the kernel it is useful to introduce five
types of coefficients. The first one is

(e.¢]

dv ¢fsYxo(nl.v)

et = [ (31)
21 (7402

—00

defined at LL accuracy and previously studied in the literature (see last reference in [3]). When
all the NLL terms are exponentiated as in Eq. (30) it will be referred to as C\', while if the NLL

pieces are not exponentiated, as in Eq. (27), it is named CEXP ansion If in Eq. (30) the x; kernel is
removed then the coefficients correspond to the case of LL plus running coupling and it is noted

as C,]f unningcoupling, Finally, the scale invariant contributions can be isolated by setting Sy to zero
in the exponent of Eq. (30) and this will be called C5caleinvariant,
The coefficient governing the energy dependence of the cross section corresponds to n = 0:

3 2

& (a5, Y. p?) = Z=2Co(Y). (32)

As the NLL corrections are large and negative, when not exponentiated they lead to a
non-convergent behavior. This is seen in Fig. 1 where the resolution scale p = 30 GeV
has been chosen. The values ny =4 and Agcp = 0.1416 GeV were taken in &S(pz) =
AN./(Boln(p?/AZ CD)) In this plot it can be seen how the coefficient CEXpanswn generates an

unphysical behav1our in contrast to the exponential rise associated to the other coefficients. Nev-
ertheless it should be noticed that the term proportional to &EY

(1) b
2 33)
XO( O ) (
)
would be added to x; in Eq. (27) if the NLO jet vertex cO® 4 g, was brought into the calcu-
lation. The convergence properties of Eq. (27) might well change in that case.

A familiar consequence of introducing the effects of the running of the coupling is that the
LL intercept is reduced as can be seen also in Fig. 1. Meanwhile, if the scale invariant sector of
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Fig. 1. Evolution in Y of the C(Y) coefficient.

the NLL kernel, x1, is also introduced then a further decrease of this rise takes place. The n =0
coefficient is directly related to the normalized cross section
a(Y) _ Co(Y)
6(0)  Co(0)

The rise in rapidity of this observable is shown in Fig. 2. Clearly the NLL intercept is very
much reduced with respect to the LL case. In Fig. 3 large values of Y are considered in order to
approach the asymptotic regime. The LL intercept tends to the asymptotic value of 4a(30) In2 ~
0.37 while the NLL result lies around one third of this number.

Independently of the NLL kernel being exponentiated or not, the remaining coefficients with
n > 1 all decrease with Y. This can be seen in the plots of Fig. 4. The consequence of this decrease
is that the angular correlations also diminish as the rapidity interval between the jets gets larger.
This point can be studied in detail using the mean values
Cm(Y)

Co(Y)

(cos(¢)) is calculated in Fig. 5. The most important consequence of this plot is that the NLL
effects dramatically decrease the azimuthal angle decorrelation. This is already the case when
only the running of the coupling is introduced but the scale invariant terms make this effect much
bigger. This is encouraging from the phenomenological point of view given that the data at the
Tevatron typically have lower decorrelation than predicted by LL BFKL or LL with running
coupling. It is worth noting that the difference in the prediction for decorrelation between LL
and NLL is mostly driven by the n = 0 conformal spin. This can be understood looking at the
ratio

(34)

(cos(mq))) = (35)

(cos(@))N = CIH(Y) gt (Y)

(cos(@)  cNH(Y) e Yy (36)
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Fig. 3. Intercepts for the cross section as a function of rapidity.

and noticing that

> 7C?ILL(Y) >
cY)

(37)
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Fig. 6. Comparative ratio between the NLL and LL coefficients for n = 1 conformal spin.

This ratio is calculated in Fig. 6. This point is a consequence of the good convergence in terms
of asymptotic intercepts of the NLL BFKL calculation for conformal spins larger than zero. In
particular the n = 1 case is special in that the property of zero intercept at LL, xo(1, 1/2) =0, is
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preserved under radiative corrections since

1\ 1 _Bo o 1), v
m(l,z)—SxO(l 2)+ (3) = gy (1 2>+ </>( ) (38)

is also zero. For completeness the m = 2,3 cases for (cos(m¢)) are shown in Fig. 7. These
distributions are relevant because they prove the structure of the higher conformal spins. The
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trend is the same as previously discussed: the correlation increases as higher order corrections in
the small x resummation are included.

4. Conclusions

An analytic procedure has been presented to calculate the effect of higher order corrections in
the description of Mueller—Navelet jets where two jets with moderately high and similar trans-
verse momentum are produced at a large relative rapidity separation in hadron—hadron collisions.
This is a promising observable to study small x physics at the large hadron collider at CERN
given its large energy range. The focus of the analysis has been on those effects with direct ori-
gin in the NLO BFKL kernel, while the jet vertices have been considered at LO accuracy. It has
been shown how the growth with energy of the cross section is reduced when going from a LL
to a NLL approximation, and how the azimuthal angle decorrelations largely decrease due to
the higher order effects. The present study has been performed at partonic level while the im-
plementation of a full analysis, including parton distribution functions, NLO jet vertices and the
investigation of collinearly improved kernels, will be published elsewhere.
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