EvtGen in LHC

Mária Smižanská (University of Lancaster)

Using inputs from

Anders Ryd (CMS), Patric Robbe (LHCb), James
Catmore (ATLAS), Michela Biglietti (ATLAS)

EvtGen origin

- EvtGen was written by BABAr authors Anders Ryd and David Lange
- Why is EvtGen different?
 - EvtGen handels decays of particles with spin degrees
 - Provides spin algebra operations for cascade decays with any number of generations
 - Amplitude approach allows to generate decays with interference effects needed correctly to describe:
 - CP violation interference in weak sector
 - Interference effects in strong sector
 - Resonant vrt non resonant decays
 - EvtGen is tuned to Babar, Belle experimental data source of new phyics information – more rich than just PDF data.

EvtGen and hadron collider experiments

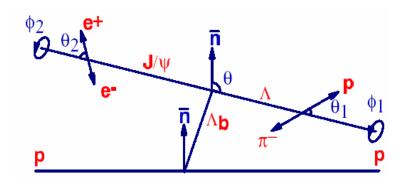
- In 2000 an agreement was achieved between Babar authors of EvtGen and CDF, D0 and LHC representatives about using Babar EvtGen code in other experiments.
- Because of huge changes needed for using EvtGen in LHC environment – it was finally decided that the LHC-specific changes will not be implemented within BABAr version
- However LHC build so called LHC version of EvtGen
- Core of EvtGen program is always taken from Babar updates.
- This allow LHC to benefit from new Babar(Belle) tunings to experimental data.

LHC B-physics modelling and LHC version of EvtGen

- Babar version of EvtGen itelf has a production part this describe a production of B-mesons in e+e- collisions with production of Upsilon decaying to two coherent states of Bmesons.
- LHC B-physic modeling starts from p-p collision with bb production – generators used are Pythia, Herwig and can be in priciple other generators.
- EvtGen is used to handel decays of B-hadrons after B-hadrons are created in hadronization models
- Technically the hand-over is done via HepMC which is commonly used Generator Model tool for storing events.
 - Interfaces code takes B-hadrons from HepMC convert them into EvtGen particle model object and after decay the de ay products are returned back to HepMC.

LHC B-physics modelling and LHC version of EvtGen, cont

- Hand-over between Pythia, Herwig and EvtGen has following problems:
 - Pythia and Hewrwig are spin blind at least current versions. So any particle is produced without spin considerations – no production polarizations.
 - Particles passed to EvtGen are assigned by spin and by polarization – by hand. Which means without any model describing the production polarization process.
 - Even if a decay of this particle is treated fairly in EvtGen it is an isolated object within the rest of event which is spinless.
 - Even if HepMC has in priciple tools to store poarization information – it has no meaning if the production models are spinless.
 - Where to decay excited B-hadrons?
 - In EvtGen because they have spins.
 - In Pythia/Herwig because they are connected with B-hadronization model were tuned together vrt b-jet multiplicities data...


LHC B-physics modelling and LHC version of EvtGen, cont

- Despite of previous comments EvtGen provides us with correct angular distributions of secondary particles – in the B-hadron frame. It also hadles CP violation correctly. So there is no doubt of necessity to use it.
- LHC specific features that required intervention in EvtGen code
 - Bs and Lambda_b and many excited states are not in Babar
 - B-mesons in LHC decay incoherently unlike in Babar
 - EvtGen returns part of B-hadorn decays back to JetSet. LHC version is returninf them back to Pythia.

Examples of applications of EvtGen typical for LHC environment

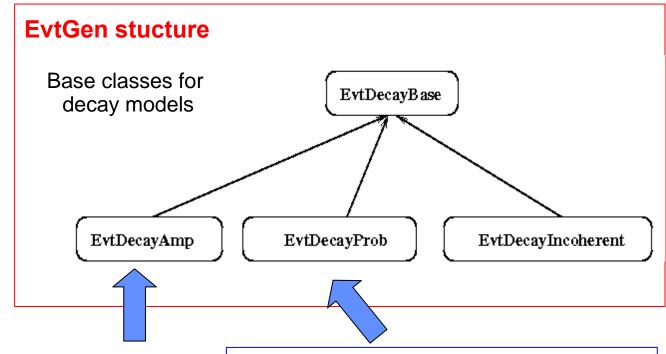
Lambda_b polarization and decay

Use of EvtGen to generate polarized Lambda h in the cascade decay:

Angular distribution

 $\Lambda_b \rightarrow J/\psi(\mu\mu)\Lambda(\pi p)$ depends on 5 angles + 6 parameters of the 4 complex helicity amplitudes + polarization P_b . Helicity amplitudes and P_b have to be simultaneously determined.

$\Lambda_b \rightarrow J/\psi \Lambda_0$ Probability function $\mu\mu$


$$w(\Omega, \Omega_1, \Omega_2) = \frac{1}{(4\pi)^3} \sum_{i=0}^{i=19} f_{1i} f_{2i}(P_b, \alpha_\Lambda) F_i(\theta, \theta_1, \theta_2, \phi_1, \phi_2)$$

ī ·	C	r	-			
1	f_{1i}	f_{2i}	F_i			
0	$a_{+}a_{+}^{*} + a_{-}a_{-}^{*} + b_{+}b_{+}^{*} + b_{-}b_{-}^{*}$	1	1			
1	$a_{+}a_{+}^{*} - a_{-}a_{-}^{*} + b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$	P_b	$\cos heta$			
2	$a_{+}a_{+}^{*} - a_{-}a_{-}^{*} - b_{+}b_{+}^{*} + b_{-}b_{-}^{*}$	α_{Λ}	$\cos heta_1$			
3	$a_{+}a_{+}^{*} + a_{-}a_{-}^{*} - b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$	$P_b \alpha_{\Lambda}$	$\cos \theta \cos \theta_1$			
4	$-a_{+}a_{+}^{*}-a_{-}a_{-}^{*}+\frac{1}{2}b_{+}b_{+}^{*}+\frac{1}{2}b_{-}b_{-}^{*}$	1	$d_{00}^{2}(\theta_{2})$			
5	$-a_{+}a_{+}^{*}+a_{-}a_{-}^{*}+\frac{1}{2}b_{+}b_{+}^{*}-\frac{1}{2}b_{-}b_{-}^{*}$	P_b	$d_{00}^2(\theta_2)\cos\theta$			
6	$-a_{+}a_{+}^{*}+a_{-}a_{-}^{*}-\frac{1}{2}b_{+}b_{+}^{*}+\frac{1}{2}b_{-}b_{-}^{*}$	α_{Λ}	$d_{00}^2(\theta_2)\cos\theta_1$			
7	$-a_{+}a_{+}^{*}-a_{-}a_{-}^{*}-\frac{1}{2}b_{+}b_{+}^{*}-\frac{1}{2}b_{-}b_{-}^{*}$	$P_b \alpha_{\Lambda}$	$d_{00}^2(\theta_2)\cos\theta\cos\theta_1$			
8	$-3Re(a_{+}a_{-}^{*})$	$P_b \alpha_{\Lambda}$	$\sin heta \sin heta_1 \sin^2 heta_2 \cos \phi_1$			
9	$3Im(a_{+}a_{-}^{*})$	$P_b \alpha_{\Lambda}$	$\sin \theta \sin \theta_1 \sin^2 \theta_2 \sin \phi_1$			
10	$-\frac{3}{2}Re(b_{-}b_{+}^{*})$	$P_b \alpha_{\Lambda}$	$\sin\theta\sin\theta_1\sin^2\theta_2\cos(\phi_1+2\phi_2)$			
11	$\frac{3}{2}Im(b_{-}b_{+}^{*})$	$P_b \alpha_{\Lambda}$	$\sin\theta\sin\theta_1\sin^2\theta_2\sin(\phi_1+2\phi_2)$			
12	$-\frac{3}{\sqrt{2}}Re(b_{-}a_{+}^{*}+a_{-}b_{+}^{*})$	$P_b \alpha_{\Lambda}$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\cos\phi_2$			
13	$\frac{3^{\vee}}{\sqrt{2}}Im(b_{-}a_{+}^{*}+a_{-}b_{+}^{*})$	$P_b \alpha_{\Lambda}$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\sin\phi_2$			
14	$-\frac{3}{\sqrt{2}}Re(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$	$P_b \alpha_{\Lambda}$	$\cos\theta\sin\theta_1\sin\theta_2\cos\theta_2\cos(\phi_1+\phi_2)$			
15	$\frac{3}{\sqrt{2}}Im(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$	$P_b\alpha_\Lambda$	$\cos\theta\sin\theta_1\sin\theta_2\cos\theta_2\sin(\phi_1+\phi_2)$			
16	$\frac{3}{\sqrt{2}}Re(ab_+^* - ba_+^*)$	P_b	$\sin\theta\sin\theta_2\cos\theta_2\cos\phi_2$			
17	$-\frac{3}{\sqrt{2}}Im(ab_+^*-ba_+^*)$	P_b	$\sin \theta \sin \theta_2 \cos \theta_2 \sin \phi_2$			
18	$\frac{3}{\sqrt{2}}Re(b_{-}a_{-}^{*}-a_{+}b_{+}^{*})$	α_{Λ}	$\sin\theta_1\sin\theta_2\cos\theta_2\cos(\phi_1+\phi_2)$			
19	$\sqrt{3} I_{m}(h, a^{*}, a, h^{*})$	0	sin A sin A cos A sin (A)			
TO ATLAC NOSA ATLACINA						

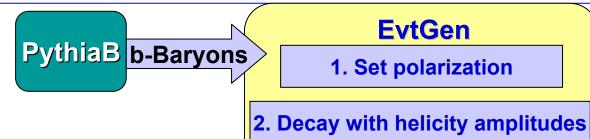
See ATLAS Note ATL-PHYS-94-036

Two different methods have been implemented in EvtGen:

- EvtDecayAmp allows to specify the complete decay amplitudes
- EvtDecayProb allows to calculate a probability for the decay that is used in an accept/reject method

Set the Λ_b polarization ``by hand" and decay with helicity amplitudes (HELAMP CLASS)
See next slide

To validate HELAMP use of the probability service of EvtGen


→ Implementation of the probability function

Method Used

Get unpolarized baryons from Pythia

EvtGen uses spinor algebra and helicity amplitudes

- it's possible to set the polarization of the particle before the particle is decayed
- .. and obtain the correct angular distributions

НерМС

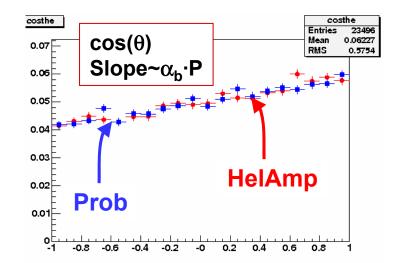
B hadrons can be only polarized perpendicular to the production plane

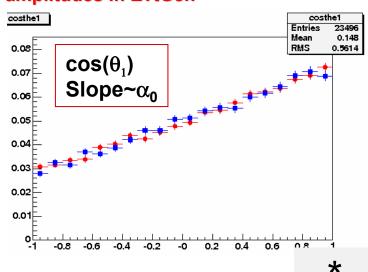
Calculate the polarization vector

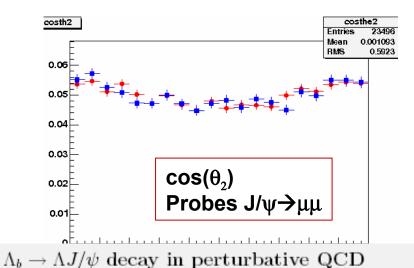
$$\vec{P} = \frac{\hat{z} \times \vec{p}}{|\hat{z} \times \vec{p}|}$$

1,

Calculate the spin density matrix

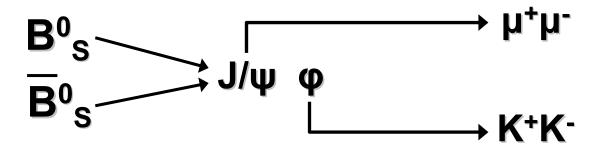

$$\rho \approx 1 + \vec{\sigma} \cdot \vec{P}$$

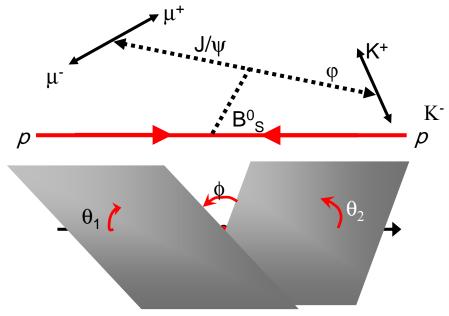

Associate the density matrix to the particle particle->SetForwardSpinDensity(ρ)


Adopt EvtGen class "HELAMP" to introduce a theoretical model for Λ_b decay

A PQCD Model*

- 5 angular distributions are generated using both the probability function and HelAmp
- $a_{\perp} = -0.0176 0.4290i$
- a = 0.0867 + 0.2454i
- $b_{\perp} = -0.0810 0.2837i$
- b = 0.0296 + 0.8124i
- α_b=-.457, P=-40%
- Blue squares are events generated according to probability function (in EvtGen)
- Red circles are events generated with helicity amplitudes in EvtGen





Chung-Hsien Chou*, Hsien-Hung Shih[†], Shih-Chang Lee[‡], and Hsiang-nan Li[§] Institute of Physics, Academia Sinica, Taipei, Taiwan 115, Republic of China

The Decay

- Angular distribution depends on three helicity amplitudes and three angles: implemented in EvtGen class SVV_HELAMP
- The angular distribution is modified by the CP-violating terms

_					
	i	$f_i^{+(-)}$			F_i
	1	$ A_0 ^2$	1	$e^{-\Gamma_{\rm L} t} = e^{-\frac{1}{2}(\Gamma_{\rm L} + \Gamma_{\rm H})t} \sin(\Delta m_{\rm s} t)\xi$	$\cos^2 \theta_1 \sin^2 \theta_2$
	2	$ A_{ } ^{2}$	$\frac{1}{4}$	$e^{-\Gamma_{\rm L}} \stackrel{t}{=} e^{-\frac{1}{2}(\Gamma_{\rm L} + \Gamma_{\rm H})t} \sin(\Delta m_{\rm s} t) \xi$	$\sin^2 \theta_1 (1 + \cos^2 \theta_2)$
	3	$ A_{\perp} ^2$	$\frac{1}{4}$	$e^{-\Gamma_{ m H}} t_{\pm} e^{-\frac{1}{2}(\Gamma_{ m L} + \Gamma_{ m H})t} \sin(\Delta m_{ m s} t) \xi$	$\sin^2 \theta_1 (1 + \cos^2 \theta_2)$
	4	$ A_{ } ^{2}$	$\frac{-1}{4}$	$e^{-\Gamma_{\rm L}} \stackrel{t}{=} e^{-\frac{1}{2}(\Gamma_{\rm L} + \Gamma_{\rm H})t} \sin(\Delta m_s t) \xi$	$\sin^2\theta_1\sin^2\theta_2\cos2\phi$
	5	$ A_{\perp} ^2$	$\frac{1}{2}$	$e^{-\Gamma_{ m H}\ t}$ $\pm e^{-\frac{1}{2}(\Gamma_{ m L}\ +\Gamma_{ m H}\)t} \sin(\Delta m_{ m s}\ t)\xi$	$\sin^2 \theta_1 \sin^2 \theta_2 \cos 2\phi$
	6	$ A_{\perp} A_{ } $	$\frac{1}{2}$	$\frac{1}{2} \left(e^{-\Gamma_{\text{H}} t} - e^{-\Gamma_{\text{L}} t} \right) \cos(\delta_1) \xi$	$\sin^2 \theta_1 \sin^2 \theta_2 \sin 2\phi$
				$\pm e^{-\frac{1}{2}(\Gamma_L + \Gamma_H)t} \sin(\delta_1 - \Delta m_s t)$	
	7	$ A_0 A_{ } $	$\frac{-\sqrt{2}}{4}$	$\cos(\delta_2 - \delta_1)(e^{-\Gamma_L t}$	$\sin 2\theta_1 \sin 2\theta_2 \cos \phi$
				$\mp e^{-\frac{1}{2}(\Gamma_L + \Gamma_H)t} \sin(\Delta m_s t)\xi)$	
	8	$ A_0 A_\perp $	$\frac{\sqrt{2}}{4}$	$\frac{1}{2}(e^{-\Gamma_{\text{H}} t} - e^{-\Gamma_{\text{L}} t}) \cos(\delta_2)\xi$	$\sin 2\theta_1 \sin 2\theta_2 \sin \phi$
				$\pm e^{-\frac{1}{2}(\Gamma_L + \Gamma_H)t} \sin(\delta_2 - \Delta m_s t)$	

Implementation in EytGen

The complex decay amplitude is constructed from the $\Delta B=2$ amplitude ($B_s-\overline{B}_s$) and the $\Delta B=1$ amplitude ($Bs\rightarrow J/\psi\phi$)

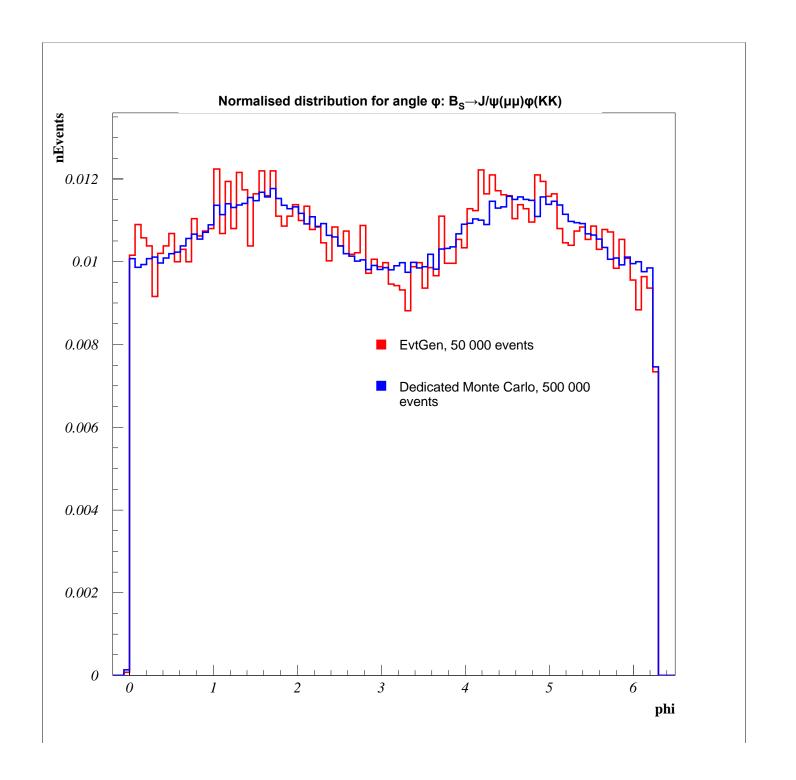
PythiaB

B-mesons

EvtGen

Final states

HepMC


$$A_{B_s \to f} = g_+(t) \langle f | H_{eff} | B_s^0 \rangle + \alpha g_-(t) \langle f | H_{eff} | \overline{B}_s^0 \rangle$$

$$\left|B_{s,phys}^{0}(t)\right\rangle = g_{+}(t)\left|B_{s}^{0}(0)\right\rangle + \alpha g_{-}(t)\left|\overline{B}_{s}^{0}(0)\right\rangle$$

$$\alpha = e^{-i\phi_s^{WEAK}}$$

$$g_{+}(t) = e^{-i\left[\frac{(m_L + m_H)_2}{2}\right]t} e^{-\left(\frac{\Gamma}{2}\right)t} \cos\left[\frac{1}{2}\left(\Delta mt - \frac{i}{2}\Delta\Gamma t\right)\right]$$

$$g_{-}(t) = e^{-i\left[\frac{(m_L + m_H)_2}{2}\right]t} e^{-\left(\frac{\Gamma}{2}\right)t} i \sin\left[\frac{1}{2}\left(\Delta mt - \frac{i}{2}\Delta\Gamma t\right)\right]$$

- We have introduced interference between mixing and decay amplitudes
- Spin configuration have been validated against independent direct Monte Carlo generations
 - Scalar → vector + vector (Bs→J/ψφ)
- These new contributions will be added to the LHC EvtGen release

Summary

- EvtGen in LHC is actively used by LHCb ATLAS and CMS production of events,
- Collaboration of LHC experiments via LCG is vital
- EVtGEn is very modular so authors can easily implement their models in language of EvtGen.
- Not many theory authors use EvtGEn as tool for manipulating with spinors – they prefere to claculate PDF from amplitudes within their models – by themselves
- Untill the producitonmodels (Pthia, Herwig) are spinless we cannot claim a fair teatment of the whole problem,
- Neverthless we can claim that anglular distributions and CP violation terams are generated fairly – using EvtGen.