MC validation in ATLAS

Borut Kersevan Jozef Stefan Inst. Univ. of Ljubljana

ATLAS experience:

- Generators used
- Validation procedures
- Future

Generators used at ATLAS

- We try to use as many generators as reasonable:
 - The final answer which is best will be given only by the data.
 - Need some overlap: different generators for the same processes.
- So far tried:
 - AcerMC
 - Alpgen (+ MLM matching)
 - Charbydis
 - CompHEP
 - Hijing
 - HERWIG (+ Jimmy)
 - MadEvent
 - MC@NLO
 - Phojet
 - Photos (both with HERWIG and Pythia)
 - Pythia (old and new showering and UE algorithms)
 - Tauola (both with HERWIG and Pythia)
 - Sherpa
 - TopReX

Common validation procedures at ATLAS

- There are in general two approaches:
 - We take into account the experience and results at the Tevatron (tunings) and/or we try to tune/check the generators using available Tevatron information ourselves.
 - We compare the results of different MC generators in the quantities where they should match (to a certain precision) either at the generator level or by performing full analysis studies.
- In all cases we of course check the obvious parameters (masses, resonance shapes, angular (a)symmetries etc.)
- We also check the stability of the algorithms and their sensitivity to parameter changes (e.g. cutoff parameters in MLM matching algorithm etc..).
- Detailed checks when switching versions of the same MC tool.

Validation using the Tevatron information

Validation using the Tevatron information

 Further comparisons of UE with different Pythia versions (and UE models):

- An example of very detailed comparison when moving from TopReX to AcerMC for generating single top production:
 - Full fastsim analysis repeated to check for possible discrepancies

W* channel : lepton+mET

	TopReX CTEQ5L	AcerMC CTEQ5L	AcerMC CTEQ6L
N _{lep}	75.26 ± 0.05%	75.41 ± 0.06%	75.40 ± 0.06%
PTlep	53.37 ± 0.05%	53.43 ± 0.06%	53.60 ± 0.08%
lep. veto	52.65 ± 0.05%	52.68 ± 0.06%	52.85 ± 0.08%
mЕ _т	42.93 ± 0.05%	43.00 ± 0.06%	43.23 ± 0.08%
N(jet)=2	21.18 ± 0.04%	21.67 ± 0.05%	20.40 ± 0.06%
N(b-jet)=2	4.51 ± 0.02%	4.65 ± 0.03%	4.22 ± 0.03%
H _T	2.96 ± 0.02%	2.98 ± 0.02%	2.77 ± 0.03%
M _{Ivb}	1.38 ± 0.01%	1.27 ± 0.01%	1.16 ± 0.02%

- Comparison between MC@NLO and TopReX tt~ results (also using fastsim/fullsim comparison):
 - Result somewhat surprising: NLO vs LO...

- Comparing Pythia and Sherpa (CKKW matching) in multi-jet events:
 - The complex answer (Sherpa) might give similar results to the simple one (Pythia).

- Comparison between PHOTOS (supposed to be an approximate algorithm in principle) and HORACE (exact QED DGLAP solution):
 - Turns out that PHOTOS is doing an excellent job!

HORACE vs Photos (3)

9

The new Pythia showering in many cases results in a harder pT spectrum of jets - stronger ISR/FSR/UE activity: Also quite harder than HERWIG/Jimmy..

- Sometimes the comparisons need some thought:
 - Comparing Pythia old and new showering models and MC@NLO in case of Drell-Yan process
 - AW tune is the best tune achieved at the Tevatron (R. Field) to match old Pythia showering with the data.
 - Turns out that the new pythia showering is closer to the Tevatron-derived result

Stability checks

- A nice example is the check of the stability of the MLM matching procedure using Alpgen W+n jets process:
 - The default ET and cone values were shifted by about 30%
 - The plot shows checks done in a SUSY analysis after the selection cuts were performed

	Default	ET(THS)=30GeV	R=0.45	a*Dr offer
W+2parton	0.29	0.19	0.12	MLM matching
W+3parton	2.20	1.60	1.64	
W+4parton	2.67	2.19	2.12	
W+5parton	1.65	2.34	1.39	SUSY CU
Sum	6.84	6.32	5.27	
	·		(-20% dif	ference)

Stability checks

 A similar check was performed in the tt~ semi-leptonic analysis where W+4jets is assumed to be the dominant background:

Stability checks

After the selection cuts the results are consistent and agree with other observations

Distributions: W+n ME (MLM) shape versus A7 (Top analysis)

Common Experience

- Possible bugs and/or discrepancies are reported back to the MC authors or GENSER through the MC group conveners:
 - In general very helpful and fast response in bug fixes.
- It would be very useful if relevant/recent Tevatron results (corrected for detector effects) would be available.
- A lot of effort used for MC validation in the ongoing ATLAS CSC production effort by no means wasted!

Future

- At ATLAS we will soon have to 'freeze' the generator set used with the first data analyses
 - Bug fixes will certainly have to go in.
- The MC base will of course expand:
 - Pythia 8
 - HERWIG++
 - ???
- We strongly believe we will have the MC tools in good shape when the first data arrives...