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Multi-jet final states and energy flows — overview

Many talks in common sessions with MC tools Under-
lying Events, PDFs and diffraction working groups.
Most of those talks not covered here.

Talks summarized here — PART | (Leif Lonnblad)

[1 The Underlying Event at the LHC [Fano]

[1 The Underlying Event at ZEUS [Namso0]

[1 How to subtract the underlying event from jets? [Starovoitov]

[ Sensitivity of 1 isolation cut efficiency to UE uncertainty [Drozdetskiy]
[J Low x physics studies using the hadronic final state from H1 [Traynor]
[1 New results from jet physics at HERA [Gwenlan]

[1 Prompt Photons at HERA [Mueller]




Multi-jet final states and energy flows — overview

Many talks in common sessions with MC tools Under-
lying Events, PDFs and diffraction working groups.
Most of those talks not covered here.

Talks summarized here — PART I

[1 Angular decorrelations of Mueller-Navelet Jets at NLO [Sabio-Vera]
[1 Towards the fully exclusive NLL BFKL evolution [Anderson]

[1 New fits to uPDFs [Jung]

[1 Jet algorithms & energy flows - log surprises [Dasgupta]

[1 IR safe determination of jet flavour at parton level [Banfi]

[1 Super-leading logs in energy-flow observables [Kyrieleis]




Angular decorrelations of Mueller-Navelet Jets at NLO

Consider inclusive dijet production in the limit

§ > iy ~ Pia ~ Dt
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Analytical study of angle decorrelation between

most forward and most backward jets the with next—
to—leading corrections to the BFKL kernel [while
keeping the jet vertices at leading order]

[Sabio-Vera]




Angular decorrelations of Mueller-Navelet Jets at NLO

Evolution of the partonic cross section with the rapidity separation of dijets
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= rise of cross section with rapidity distance
= NLL intercept much reduced compared to LL case Sabio-Vera]




Angular decorrelations of Mueller-Navelet Jets at NLO
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Angular decorrelations of Mueller-Navelet Jets at NLO
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Angular decorrelations of Mueller-Navelet Jets at NLO

[Sabio-Vera]

General features: NLL have less decorrelation compared to LL, much
better description of Tevatron data with just (cos(m¢)) by hand +
simple assumptions (waiting to see the plots!)

Room for improvement:
energy/momentum conservation?
higher order jet vertices?




The High Energy Limit of Scattering Processes
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The High Energy Limit of Fixed Order Matrix Elements
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The High Energy Limit of Scattering Processes
CHHEOOOO0O00

Observations

@ |n the limit of large rapidity spans, the fixed order matrix
elements are dominated by contributions from diagrams
with a f-channel gluon exchange

@ This limit will be called The High Energy Limit and is
generally characterised by the following phase space
configuration of the final state particles

Yo=>Y1> > Yn> Y. |Ko| ~ |Ki| ~ |Knga)

l.e. multiple, isolated, hard parton production (multiple jets)

@ Good agreement (~ 10%) with the full, fixed order result in
the relevant limit



The Possibility for Prediction of n-jet Rates

The Power of Reggeisation
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At LL only gluon production; at NLL also quark—anti-quark pairs
produced.

Prediction of any-jet rate possible.
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The High Energy Limit of Scattering Processes
0o00e00000

Reggeisation and the BFKL Equation

The evolution of the reggeised gluon is described by the
BFKL equation

wi, (Ka, Kp) = 6@+ (kg — kp) + / KK, (ka, K') £, (K, kp)

w: Mellin conjugated variable to the rapidity y along the evolution.

@ The kernel &, consists of the virtual corrections of the trajectory
and the real corrections from the Lipatov vertices.

@ The BFKL equation provides a very convenient framework for
organising the divergences in the factorised form of the |A1]? on
the previous slide.



The High Energy Limit of Scattering Processes
OO0000000e

Direct BFKL Evolution, 3

@ Choose a random number of vertices for the evolution, n = 0
© Generate a set {k; !, of transverse momenta (the outgoing
momenta are {—K;}i—1.. . .n)

© Calculate the corresponding set of trajectories {w(qi) i1 net,
and vertex factors

(V9 i 1)} imtm Qi = Ka+ 211 K
© Generate the inter-vertex rapidity separations {dy;} according to
the distributions e~(9)o
n+1

@ Calculate the corresponding A = 3",
H?:“I V(q-"? Qi+ :}

Can construct full final state?! Trivial to impose energy and
momentum conservation and do proper jet studies.

dy; and return

ZSee later



MNecessities for a Calculation to NLL accuracy

Observation

© Imposing Energy and Momentum conservation (i.e.
restricting phase space integral to that accessible at a

given energy) is completely unrelated to the NLL
corrections to the evolution.

© To calculate an observable to full NLL accuracy, three
ingredients are necessary:

¢ NLL Impact Factors
e NLL Evolution

o Energy and Momentum Conservation



Mecessities for a Calculation to MLL accuracy

First Check. ..

Check of finite part
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1/N2 suppressed terms: 100% agreement.
Calculation under control.



Conclusions

Summary and Conclustions

@ Have constructed a very efficient method for obtaining the
BFKL evolution as an approximation to multi-leg processes
Also applicable to small-x studies etc.

@ Have started the program to obtain fully exclusive final
state information of the NLL BFKL Evolution necessary
for energy and momentum conservation and thus full NLL
accuracy

@ Conclusion from the study of the exclusive NLL
quark—anti-quark vertex:
Exclusive information absolutely crucial for realistic
phenomenology, since the gg-vertex gets contributions
from relatively large invariant masses of the gg-pair.
Cannot assign a single rapidity to the quark and the
anti-quark.

@ http://www.hep.phy.cam.ac.uk/~andersen/BFKL



New fits to uPDFs

H. Jung (DESY)

Motivation: why full event information is needed for PDF fits
Fit method
@ full event simulation and parton evolution
@ FULLFIT instead of FASTNLO
@ Example application to uPDF
@ using CCFM to fit F,, F_and charm photoproduction
@ Apologies...
#* talk more about intentions rather than results...
#® results will come for proceedings ...

Hannes Jung 2 HERA-LHC worksnap, 6-9 June 2006, CERN Fage 2



Need for uPDFs

J. Collins, H. Jung
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Need for fully uPDFs

@ full kinematics can only be
described by fully (double) uPDFs
a dependence on K7 and k*

@ reformulate pQCD methods in terms
of fully uPDFs
a extensionofk,, __

@ Advantages:
kinematics correct already at LO
NLO corrections much smaller
(BFKL example: 70 % from
kinematics)
@ no need for separate methods
(resummation or the CCS (colins

B g o e A
aiZanon

Soper Sterman ])

@ unified treatment of ME calcs and
MC generators

Hannes Jung 2* HERA-LHC workshop, 59 June 2006, CERN

Different steps of approximations

fully uPDFs
uPDFs (k )

"t factorization/
integrated PDFs + parton showers

integrated PDFs + fixed order
calculations in LO and NLO

FPape 8



PDF fit - program

read input
[ )= stoningvalue

_DEW starting distr. | store pdf
= @CD evalution |

(parametrised
or grid?)

[ cal. xsection
<—T dala with errors )
2
re By
e
jets input pdis -
L calculate xsec
of final state

data with erors |

input pdfs -
w calculate xsec

of final state
2 —
A =—1—L data with errors )
et
tabal
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Hannes Jung 2= HERA-LHC workshop, §-9 June 2006, CERN

Goals for PDF fits:

L

fit inclusive and exclusive
measurements

using as many measurements as
possible ... which can constrain
the PDFs

HZTool

using full information of final
states

MC@NLO or similar
CASCADE

consistent treatment of
experimental and theoretical
errors

Papge 11



Method to fit incl. and final states

9 Use full information of inclusive and final state measurements (using
HZTOOL - histograms of predictions and measurements)

@ Use full event simulation including parton showering and hadronization

a Method for uPDF a la CCFM:

@ generate grid file for Az kL.q)

@ yse convolution with starting distribution .“0(Z0) to obtain full PDF:

rAlx, k. q) = fdxgﬁmi}fﬁ] oy . (I_D - (E)

@ simulate for many events
@ calculate chi**2 for different processes
@ General purpose fitting procedure, can be applied also to DGLAP type fits
and in collinear factorization
@ Does not rely on any approximation or pre-calculation !l

Fames Jung 2% HERA-LHC worksnop, 58 June 2006, CERN Page 15
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2 (T-D -0, :

@ Define T = E 5 5 . 5 + E o0

é .j'; stat | {Ti- UNCo + o= - o

a  using offset method:

@ set a; = 0 for calculation
of central value

@ |ater a; = =1

@ fit parameters of starting
distribution

ol 12N A=A (1 o4
rg(x.ug) =Nz - (1 —x)

e using |:2 data H1 1 Bwr prys g o2
(2001) 33-61, DESY 00-181)

® < 0.005 QE = 5 GeV*
@ Fitresult: AN=0.015+0.003

Hannes Jung 2* HERA-LHC workshop, §-9 June 2016, CERK
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Pape 17



Fit results

Fit details:
a using full splitting function in CCFM including non-singular terms
@ using proper
@ still only one-loop :(Mz)
Results so far:
@ no dependence on (1-x) parameters observed (fit only x<0.005 ) fix to
~(1-x}
using stat and uncorr syst errors for fit
;fi-*"ncff ~ 1 much better than before ....
« with different as(Mz), k dependence of uPDF also different

NEW: )

a fit of initial parameters ~ g(z.ug) = Nz ™ (1 — )
TO DO

@ study of experimental uncertainties

@ systematic study of theory parameters

Hannes Jung 2* HERA-LHC workshop, 6-9 June 2006, CERN Page 20



Conclusion

a  Full treatment of kinematics in fits to PDFs necessary
@ atleast if less inclusive quantities are investigated
a  Fit method including full evolution and event generation works |
@ although slow and needs improvements
a Method applicable for all kinds of QCD evolution and measurements
implemented in HZTOOL - package
a Example application - reasonable results for inclusive quantities:
a F,, F.f photoproduction of charm

- Making full use of all relevant experimental
measurements !

-2 Consistent set of uPDFs from inclusive and
final states (with proper kinematics) !

Hannes Jung 2* HERA-LHC workshop, §-9 June 2006, CERK Pape 25



Quark and gluon jets

e In the literature 376 papers with ‘quark/gluon jet in title
e Physically a quark/gluon jet = a jet initiated by a quark/gluon

e Experimentalists try determination of jet flavour

e Discriminate quark/gluon jets using kinematical properties
[jet profile, subjet multiplicity]

e Jet charge = weighted charge of particles in a jet
*‘-;}.is--r = Z fan;‘./ Z (ti
iejet 1€ jet

All experimental definitions are practical but IR unsafe

o Hints of theoretical problems in IR safety and flavour

e Feynman is alleged to have said “impossible”

o Flavour insensitive definition of observable suggested
[Nagy, Soper]



Jet flavour and infrared safety

At NLO any IR safe jet algorithm is also an IR safe flavour algorithm
» Soft/collinear gluons do not change the flavour
o Collinear g pairs are always recombined together

Beyond NLO soft large angle ¢4 pairs can be clustered into different
jets thus spoiling the reconstruction of jet flavour

IR safety & soft quarks and hard partons never recombined



Jet flavour algorithms in ee™

Durham algorithm Flavour algorithm
» Soft gluon emission g — g;g; * qq splitting ¢ — q.q;
_ - 462 dE; d6?,
[dhe; ]| M? (kj)| ~ iy LY (k] |M* (ki) | ~ - -

min(Ey, E;) 6% ' max(Ey, E;) 67
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Tests of IR safety in eTe~ annihilation

Generate multi-parton configurations in e e~ and cluster to 2 jets

Compute fraction of misidentified events «,., as a function of uf
IR safety at fixed order (EVENT2) = o,.q vanishes for i3 — 0
IR safety at all orders (HERWIG) = different scalings for y3 — 0
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Jet flavour in hadron-hadron collisions
» Distance d;; is modified to have boost invariance

U R T mas( keg, kg )™ min kg, fﬁj}z_ﬂ softer of i. ; favoured
di " = m”}“'f'_'“““ﬁ”]x{ min (k3. kZ) softer of i, j favourless

* Need adistancewrt B (y — oc)and B (n — —o<)

g _ max (kei, keg (1)) min(keg, kep(n:))* < : fevoured
iB 7 | min(k2, k25 (n:)) : fevourless

e [:p(n) and k; g (1) monotonic functions of n that saturate at the typical
hardness of the event
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Tests of IR safety in hadron-hadron collisions

e |R safety tests impossible at fixed order at the moment

e Missing favour information in fixed order programs
e Missing two-loop virtual correction to each subprocess

e Tests with HERWIG = Importance of flavour blandness
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Data ¢ NLO prediction
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Heavy-flavour jets

The algorithm has been designed to work at parton level
At hadron level the algorithm can be used for heavy flavour jets
Experimental definition of i-jet = jet containing s-flavour

Comparisons to NLO of inclusive py spectra have large
renormalisation scale uncertainties (~ 40 — 50%)
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One way of quantitatively describing gaps between hard jets is
In terms of E; flow into the gap. Thus we study the differential

distribution
1 do

cdQq’
Qq I1s sum over E; of emissions inside the gap :

Q=Y &,

=39,

Here the sum can refer to either a sum over hadrons or a sum
over minijets in the gap. Minijets are soft jets obtained after
running a jet algorithm e.g k; clustering. Commonly used
definition experimentally (H1 ,ZEUS).

Mrinal Dasgupta Problems in resumming interjet £; flows with k; clustering.




Since Qn < Q one must resum large single-logarithms
as(Q)In D% for reasonable theoretical description.

et S AT
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Problem with theoretical description of such observables
uncovered some years ago. They are non-global in nature.

M. Dasgupta and G.P. Salam, 2002
If Qq Is defined in terms of the hadronic energies in the gap
rather than minijet energies result is

do d
dQqa dQq
R independent-emission piece, exponentiates one gluon result.

S represents effects of correlated soft emission, only numerical
results for two/(1+1) jets, in large N; limit exist.

e N(Y/%)s (Q/Qn)

Mrinal Dasgupta Problems in resumming interjet £, flows with k; clustering.
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@ k; clustering reduces the magnitude of the non-global
component.
R.B. Appleby and M.H. Seymour 2003
Clustering algorithm pulls soft hadrons in the gap outside
by clustering with harder emissions.

@ Some configurations escape clustering , contribute to NG
component. NG piece non-zero but significantly smaller.
Appleby and Seymour’s result : after k; clustering the
distribution takes the form e="S . S reduced by clustering
and the independent emission e~ is unchanged.

@ Reduction of S shd reduce theoretical uncertainty.

Mrinal Dasgupta Problems in resumming interjet £; flows with &; clustering.




@ AS extended this ansatz to dijets in photoproduction.
Computed just primary emission piece (analogous to e —~)
exactly. More complicated colour structure with colour
anomalous dimension matrices.

@ Approximated NG component, arguing that it's small.
Agreement within theoretical uncertainty with HERA data.

@ However there's more to the story |
A. Banfi and M. Dasqgupta, 2005

Mrinal Dasgupta Problems in resumming interjet &; flows with k; clustering.




New terms due to clustering

@ There are algorithm dependent single-log pieces in
addition to e ~'S.

@ Discovered while studying jets e.g azimuthal correlations
between dijets near ¢ — .

@ Origin : Incomplete real-virtual cancellations outside the
gap

(a) /"#1._2 ;.:"

Mrinal Dasqgupta Problems in resumming interjet £ flows with k; clustering.



Algorithm dependent corrections

Leading © (a2) correction thus obtained :
indep. 16 2 ( 2,2\ 3 :
Ccinder zﬁc,:(asf_ )r JAn >

Need to integrate the real-virtual piece over region where pure
real emission are clustered away. Not accounted for by e—RS
form.

Mrinal Dasgupta Problems in resumming interjet £; flows with k; clustering.



Comparisons with EVENT2
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Super Leading Logarithms in
energy-tlow observables

Albrecht Kyrieleis

in collaboration with M.Seymour and J. Forshaw



Gaps-between-jets

= pp — jet jet + soft gluons

= forbidden: real gluons with k, >Q, in rapidity gap between jets

2
Resum: (CksL)n, L = LOQ%, Q — pJ_,jet
0

Independent emission (Sterman et al) calculated for:

e DIS at HERA (k, jet algorithm) [M.Seymour R.Appleby, 2003]
+ estimate of non-global piece
e Hadron collider [Oderda, Sterman, 1998]

A. Kyrieleis 4



Out-of-gap gluon in collinear limit: a surprise

Q@ dk o0
o1 = L / dy M?
Qo k1

I

D Jet . |
—@ ® : xXe K>

I

2
M==0 M?2 #£0 I

Non-zero contribution from initial state collinear limit

A. Kyrieleis 9



Super-leading logarithms (SLL)

Out-of-gap gluon : Qg /Q dki Logg
Qo k

Each gluon in the gap: Qg /Q dk, (¥

o] = ag(cl asL+co a§L2_|_c3 ag’L?’. L)

Failure of plus-prescription above Q,= SLL

collinear gluons into pdf only below Q, () E E E E <>

A. Kyrieleis 11
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G,: Independent emission,
all orders
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orders

SLL relatively small for L<4

But:
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gap not yet included
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Summary

We have found new super-leading logarithms in calculation of
pp — Jjet gap jet

s Stems from region where out-of-gap gluon becomes coll. to initial state
particle, originates from Coulomb phase terms

s 'Breakdown of plus-prescription above Q," probably gives rise to
double logs instead of single ones

s Formally more important than any LL result, numerically modest at
LHC, but effect of n gluons outside the gap not yet included

m Saturation at large Y
— deeper link between non-global observables and small-x physics

A. Kyrieleis 16



Conclusions

[J Angular decorrelations of Mueller-Navelet Jets at NLO [Sabio-Vera]
comparison with Tevatron data public very soon

[J Towards the fully exclusive NLL BFKL evolution [Anderson]
started program to obtain fully exclusive final state info

[J New fits to uPDFs [Jung]
first results presented, many more promised for the proceedings

[ Jet algorithms & energy flows - log surprises [Dasgupta]
In progress through dijet resummations in DIS and pp collisions

[J IR safe determination of jet flavour at parton level [Banfi]
next: application to b-jets

[] Super-leading logs in energy-flow observables [Kyrieleis]
breakthrough discovery??

Many new results presented, much more to come in the near future!
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