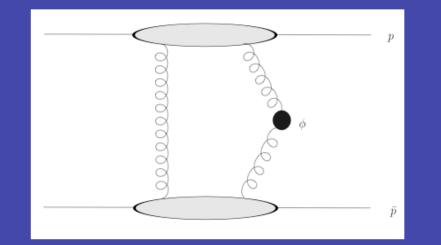
ExHuME Updates and Single Diffractive Overlap Background to Higgs

Andrew Pilkington

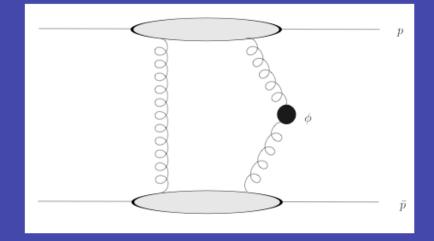

The University of Manchester

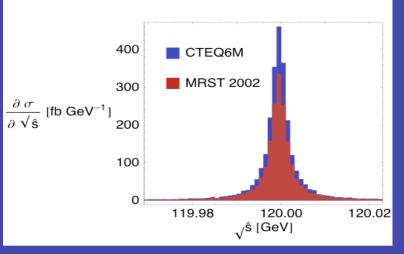
June 2006

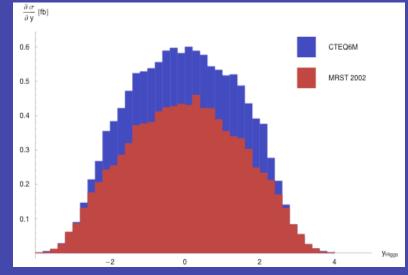
From Hera to the LHC

The ExHuME Event generator.

- Project started with James Monk (then Manchester, now UCL) to implement the Durham Model of central exclusive production.
- Released in January 2005 with Higgs, di-quark and di-gluon production. (v1.0) after lots of discussions with Durham.
- Current version is 1.3.2. Involves a few bug fixes, improvements, removed dependencies on CERNLIB. Available from COMP-PHYS (or from me).


ExHuME simulates up to parton level using LHAPDF for the PDF's. Then Pythia used for parton showering and hadronisation.


June 2006


From Hera to the LHC

Studies using standard ExHuME

- Pot acceptance of FP420 project.
- Higgs (WW and bb decay channels) at LHC.
- Dijet prediction at CDF

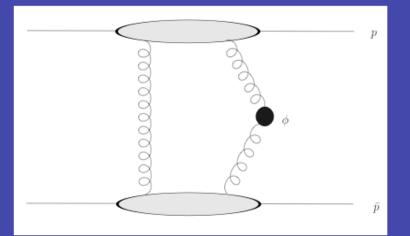
From Hera to the LHC

Modified ExHuME....

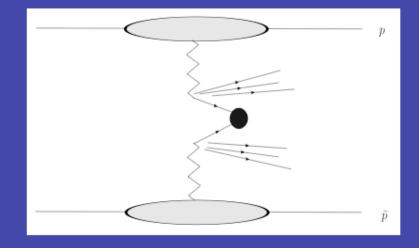
- Di-Photon studies at CDF (Andrew Hamilton)
- Di-gluino production and
- Gluinoball production (with T.Coughlin and J. Forshaw)
- CP violating Higgs in the tri-mixing scenario (model of Ellis. Pilaftsis and Lee) with A. de Roeck and L. Rurua.
- Some of these modifications have required some hacking of ExHuME which makes an add on package difficult, but we will release one anyway (will not be properly backward compatible).

Towards a new, rewritten ExHuME.

• Why re-write?


- There are things we want to add but will be very difficult unless we make the code work in a different way.
- These are (for example) 3 particle final states which are background to Higgs signals (bbg, qqW) and improved soft-survival models to get azimuthal correlations between protons correct.

Another Advantage: Can add in different production mechanisms. Will Plano (Manchester) is adding gamma-gamma fusion to this new ExHuME.


Release Date: Late 2006.

Higgs + Backgrounds for FP420

- Three types of processes:
 - Central Exclusive (a); Higgs, bb, gg.
 - Double Pomeron Exchange (b); bb, gg, Higgs.
 - Pile up, 2*SD + QCD; bb, gg uu etc. This turns out to be very large.

(b) Double Pomeron

From Hera to the LHC

Fast Timing in FP420

- Two complementary designs, QUARTIC + GASTOF.
- Basic Idea: Tag 2 protons in FP420. Measure timeof-flight difference, δt, using fast timing (about 10ps resolution). Construct vertex position.
- This gives vertex accurate to approx 3mm (QUARTIC).
- Get vertex of hard interaction veto if not inside constraint set by QUARTIC.
- Rejects 97.4% of SD + SD + QCD pile-up background.
 - see (e.g) Andrew Brandt's talk at hep.uchicago.edu/workshops/2005-picosecond/

QCD Background Estimate

- Inclusive bb events generated with Herwig
- Take cross section (σ) on input. E_T > 40GeV (jets)
- Multiply by probability that an event at LHC is SD and proton ends up in the pots (P_i). Found by running Pythia taking SD protons and running through FPTRACK (Peter Bussey).
- Multiply by Number of Overlap (N) in this event.
- Repeat previous 2 steps to get second overlap event. Do not double count (divide by 2)
- Quartic Rejection Factor Q.
- $\sigma_{new} = 0.5 \text{ N} (\text{N-1}) P_i^2 Q \sigma$
- σ_{new} = 116000 fb (L=2.10³³). Need to remove by kinematic matching.

Kinematics of CEP

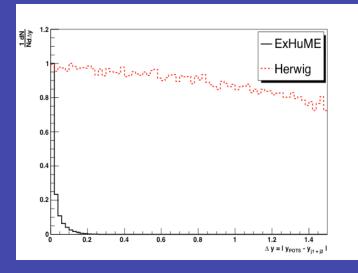
Collision energy = s
 Momentum loss of proton k = x_k -measured by FP420.

3) Mass measured in pots, M_x=(x₁x₂s)^{0.5}
4) Rapidity of central system measured in pots, y = 0.5Ln(x₁/x₂).

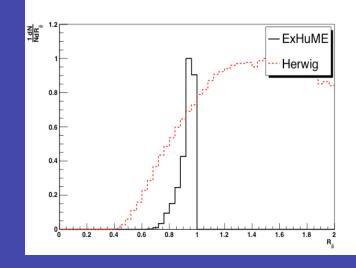
Find jets on hard sub-process (cone or KT)......
5) y_{jj} = 0.5*(η₁ + η₂). (η_a is pseudo-rapidity of jet a)
6) M_{jj} is mass measured in 2 highest E_T jets.
7) Dijet mass fraction, R_{ii} = M_{ii}/M_X.

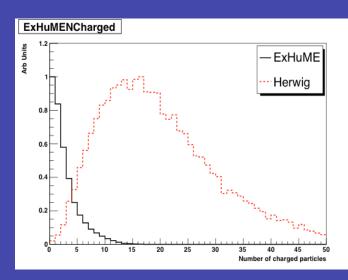
Generating Background.

- Generate bb background with Herwig.
- Use knowledge of pomeron flux to get 2 SD protons:
 - Generate x values according to pomeron flux between min and max values of x using monte carlo methods.
 - Assume t=0 (can be changed to allow other t's later.


Advantage: Fast do not need to run lots of Event Generators and add them together.

Disadvantage: No proton debris from SD events – does not matter much because we are only interested in the hard sub-process.


June 2006


From Hera to the LHC

Results

 $N_{CHARGED}$ is the number of charged particles ($|\eta| < 2.5$) associated with the 2 jet vertex that is NOT contained within the jets.

From Hera to the LHC

Fraction of events remaining after kinematic + exclusivity cuts.

CUT	ExHuME	HERWIG
∆y < 0.1	0.851	0.043
0.8 < R _{jj} < 1.0	0.941	0.039
N _{charged} < 5	0.885	0.071
Combined	0.708	0.00012

Final Results

- Rejection factor of approximately 10⁴ of SD overlap background using kinematic + exclusivity cuts.
- Background cross section now about 15fb but spread over large mass range. Reduced by cutting on a mass window around Higgs mass.
- If AM = 2.5GeV either side of Higgs Mass (120GeV), then background = 0.6fb. Smaller than signal.
- Background remains smaller up until $L = 3.3 \times 10^{33}$.