Hard rescattering in exclusive Higgs boson production at the LHC

Leszek Motyka

DESY Theory, Hamburg & Jagellonian University, Kraków

motyka@mail.desy.de

Based on recent work done with J. Bartels, S. Bondarenko and K. Kutak

Overview

Motivation

The Durham approach

Hard rescattering

Gluon extrapolation and Results

Discussion, Outlook, Conclusions
The exclusive Higgs boson production in pp: $pp \rightarrow pHp$

The protons stay intact and are detected by forward detectors

Precise determination of kinematics and mass of the produced system, $\Delta M \sim 1$ GeV

Possibility to investigate quantum numbers of the produced state e.g. by observing angular correlations of the protons filtering the scalar from the pseudoscalar

Possible measurements of hypothetical invisible particles in analogous processes

Numerous papers by V. Khoze, A. Martin, M. Ryskin, A. Kaidalov, J. Stirling
The main idea

Exclusive $pp \rightarrow pHp \rightarrow$ Higgs mass gives hard scale \rightarrow Sudakov form-factor \rightarrow fusion of two hard ladders into Higgs

Multiple soft rescattering of the spectator partons (fields) assumed to be independent of the hard production mechanism

Are hard ladders are small enough to see the protons as colour transparent?

Key issues: hard ladder size, coupling, transverse profiles of matter and impact parameter dependence of scattering \rightarrow relation of “ladder size” to saturation radius
Kinematics of exclusive production and rescattering

Large rapidity distance $y = 15 - 20$ characterizing the rescattering of the hard ladder \rightarrow long low-x evolution and enhancement
Two Pomeron Fusion amplitude

Amplitudes to find gluon pair in the proton:
→ two-scale off-diagonal unintegrated gluon distributions are introduced:

\[f_g(x, x', k, \mu), \quad xg(x, Q^2) = \int \frac{dk^2}{k^2} f_g(x, k^2, Q) \]

Sudakov form factor is naturally incorporated in \(f_g \): [Kimber, Martin, Ryskin]

\[f_g(x, k^2; \mu) = Q^2 \frac{\partial}{\partial Q^2} \left[xg(x, Q^2) \cdot T_g(Q, \mu) \right]_{Q^2=k^2} \]

\[f_{g}^{\text{off}}(x, k^2; \mu) = R_\xi Q^2 \frac{\partial}{\partial Q^2} \left[xg(x, Q^2) \cdot \sqrt{T_g(Q, \mu)} \right]_{Q^2=k^2} \]

\[\text{Im } M_0(y) \sim \int \frac{dk^2}{k^4} f_{g}^{\text{off}}(x_1, k^2; \mu) f_{g}^{\text{off}}(x_2, k^2; \mu) \]
The integrand is dominated by momenta $Q_T \sim 1 - 2$ GeV

Sudakov form factor reduces the exclusive cross section by two orders of magnitude
Soft gap survival

Soft rescattering corrections to a hard exclusive scattering process \(\rightarrow \) opacity \(\Omega(b) \)

Independence of hard production and rescattering is assumed

\[
M_{\text{corr}}(b) = M_{\text{hard}}(b)[1 - \Omega(b)/2 + (\Omega(b)/2)^2/2! - (\Omega(b)/2)^3/3! + \ldots] = M_0(b) \exp(-\Omega(b)/2)
\]

Amplitude of matter distribution in the proton

\[
S(b_1) \sim \exp(-b_1^2/R^2), \quad R^2 \sim 8 \text{ GeV}^{-2}
\]

\[
M_{\text{hard}}(b) \sim M_0 \int d^2b_1 \ S(b_1) \ S(b_1 - b)
\]

\[
\sigma_{\text{excl}} = \int d^2b \int d^2b_1 \ |M_0 \ S(b_1) \ S(b_1 - b)|^2 \exp(-\Omega(b))
\]
Impact parameter profile of exclusive process

Gap survival factor:
\[S^2 = \frac{\int b \, db \, \exp(-\Omega(b)) \, |M_{\text{hard}}(b)|^2}{\int b \, db \, |M_{\text{hard}}(b)|^2} \]

Exclusive Production = Hard matrix element \(\times \) Amplitude of no rescattering

Production profile (red) for LHC is magnified by factor of 100

Production dominated by \(b \simeq 1.2 \text{ fm} \) and \(b_1 \simeq 0.6 \text{ fm} \)

Two-channel eikonal model of gap survival is used that incorporates low-mass diffractive intermediate states. Typically: \(S^2 = 0.03 \) for exclusive processes at the LHC
Hard rescattering correction

\[\text{Im } M_{\text{corr}}^{(1)}(y) = -\frac{9}{8} 16 \pi^2 (2\pi^3 A) \int_{x_a}^{x_b} \frac{dx_4}{x_4} \int \frac{d^2 q}{(2\pi)^2} \int \frac{d^2 k_2}{2\pi k_2^4} \int \frac{d^2 k_3}{2\pi k_3^4} \int \frac{d^2 k_4}{2\pi k_4^4} \]

\[\times [V_{3P} \otimes f_g^{(a)}(x_1)](k_2, k_4) G_A(k_2, k_3; x_1, x_2; M_H/2) \]

\[\times f_g^{(b)}(x_3, k_3, q - k_3; M_H/2) f_g^{(c)}(x_4, k_4, -q - k_4) \]
[\mathcal{V}_{3P} \otimes D](k_2, k_3) = \alpha_s^2 c_{3P} \int \frac{d^2 k_1}{2\pi k_1^2} \left\{ \left(\frac{k_2^2}{(k_1 - k_2)^2} + \frac{k_3^2}{(k_1 + k_3)^2} - \frac{(k_2 + k_3)^2 k_1^2}{(k_1 - k_2)^2 (k_1 + k_3)^2} \right) D(k_1) - \frac{k_1^2}{(k_1 - k_2)^2} \left(\frac{k_2^2}{(k_1 - k_2)^2 + k_1^2} - \frac{(k_2 + k_3)^2}{(k_1 - k_2)^2 + (k_1 + k_3)^2} \right) D(k_2) - \frac{k_1^2}{(k_1 + k_3)^2} \left(\frac{k_3^2}{(k_1 + k_3)^2 + k_1^2} - \frac{(k_2 + k_3)^2}{(k_1 - k_2)^2 + (k_1 + k_3)^2} \right) D(k_3) \right\}
Exclusive production in position space

\[
\text{Im } \tilde{M}_{\text{corr}}(y, b, b_1) = - \left\{ \frac{9}{8} 16\pi^2 (2\pi^3 A) \right\}^2 \frac{dx_4}{x_4} \int \frac{d^2k_4}{2\pi k_4^3} \int \frac{d^2k_3}{2\pi k_3^3} \int \frac{d^2k_2}{2\pi k_2^3} \int \frac{d^2k_4}{2\pi k_4^3} \\
\times [V_{3P} \otimes \tilde{f}^{(a)}_g(x, b - b_1)](k_2, k_4) G_A(k_2, k_3; x_1, x_2; M_H/2) \\
\times \tilde{f}^{(b)}_g(x_3, k_3^2, b_1; M_H/2) \tilde{f}^{(c)}_g(x_4, k_4^2, b_1) \right\} - \{y \rightarrow -y\}
\]

\[
\frac{d\sigma_{pp \rightarrow pHp}^{(0+1),\Omega}(y)}{dy} = \frac{1}{16\pi} \int d^2b \int d^2b_1 |S(b_1)S(b - b_1)M_0(y) + M_{\text{corr}}(y, b, b_1)|^2 \exp(-\Omega(s, b))
\]
\textit{\(b\)-dependent Balitsky-Kovchegov equation}

Resummation of BFKL pomeron fan diagrams in the LL approximation with rescattering corrections

\[
\frac{\partial \tilde{f}_g(x, k^2, b)}{\partial \log 1/x} = \frac{\alpha_s N_c}{\pi} k^2 \int_{k_0^2}^{k^2} \frac{dk'}{k'^2} \left\{ \frac{\tilde{f}_g (x, k'^2, b) - \tilde{f}_g (x, k^2, b)}{|k'^2 - k^2|} + \frac{\tilde{f}_g (x, k^2, b)}{[4k'^4 + k^4]^{1/2}} \right\} \\
-\pi \alpha_s^2 \left(1 - k^2 \frac{d}{dk^2} \right)^2 k^2 \left[\int_{k^2}^{\infty} \frac{dk'^2}{k'^4} \log \left(\frac{k'^2}{k^2} \right) \tilde{f}_g(x, k'^2, b) \right]^2
\]

Improvements in the linear part: [\textit{Kwieciński, Martin, Stasto, Kutak, LM}]

- collinearly improved NLL corrections to the BFKL kernel
- running coupling constant
- non-singular part of the DGLAP splitting function \(P_{gg}\) included
- the equation coupled to DGLAP evolution of quarks

Special features:

- Gluon recombination/ rescattering effects
- Impact parameter dependence in the local approximation
Unintegrated gluon — b-dependence

$\tilde{f}_g(x, k^2, b)$ plotted as a function of b for $k^2 = 1, 2, \ldots, 5$ GeV2
and for $x = 10^{-3}$ and $x = 10^{-8}$

\begin{align*}
\tilde{f}_g(x; k^2; b) &= \int d^2 b f_g(x, k^2, b) \\
xg(x; Q^2) &= \int Q^2 d k^2 \frac{d}{k^2} f_g(x, k^2)
\end{align*}

\rightarrow Broadening and box-like shape of the proton at lower momenta and very low x
\rightarrow At very low x — gluon is a non-monotonical function of the distance from the centre
Unintegrated gluon — x-dependence

$\tilde{f}_g(x, k^2, b)$ plotted as a function of x for $k^2 = 1.5, 2.5, \ldots, 5$ GeV2 and for $b = 0$ and $b = 0.6$ fm

\rightarrow The maxima signal that the saturation scale $Q_s(x)$ reached the momentum k
\rightarrow Decreasing distribution for $k^2 < Q_s^2(x)$
\rightarrow Saturation scale grows with decreasing x
\rightarrow Saturation scale decreases with growing b
Evaluation of rescattering correction

$Y_1 \longrightarrow$ rapidity distance of the Triple Pomeron Vertex from the projectile proton at $b = 0$ and $b_1 = 0$. $M_H = 120$ GeV, the LHC energy

$$R_y(y_1) = \left[\frac{|d\tilde{M}_{\text{corr}}(y, b, b_1)/dy_1|}{|\tilde{M}_0(y, b, b_1)|} \right]_{b=b_1=0, y=0}$$

BFKL Green’s function (continuous) and the two gluon exchange (dashed)

→ Screening is strongest for rapidities close to the production vertex

→ Multiple scattering of the large mass intermediate state

→ The correction is large
Evaluation of rescattering correction

Relative correction as a function of the distance of the production vertex from the centre of the target proton – at zero impact parameter of the collision

\[R_b(b_1) = \left[\frac{|\tilde{M}_{\text{corr}}(y, b, b_1)|}{|\tilde{M}_0(y, b, b_1)|} \right]_{y=0, b=0} \]

→ The rescattering correction amplitude is more concentrated close to the centre of proton than the production amplitude

→ The correction should experience stronger suppression by the soft rescattering than the production amplitude
Effect of hard rescattering on the cross section

\[
\left(\frac{d\sigma_{pp\rightarrow pHp}}{dy} \right)_{y=0} \quad \text{(in fb) with hard and soft rescattering corrections included}
\]

— for \(M_H = 120 \) GeV at the LHC

<table>
<thead>
<tr>
<th>TPF</th>
<th>(\alpha_s = 0.15)</th>
<th>(\alpha_s = 0.2)</th>
<th>(\alpha_s = 0.25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.12</td>
<td>0.042</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Hard rescattering correction \(\rightarrow \) soft gap survival probability, \(\hat{S}^2 \), is modified

<table>
<thead>
<tr>
<th>TPF</th>
<th>(\alpha_s = 0.15)</th>
<th>(\hat{S}^2 (0.2))</th>
<th>(\hat{S}^2 (0.25))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.024</td>
<td>0.037</td>
<td>0.051</td>
<td>0.016</td>
</tr>
</tbody>
</table>

\(\rightarrow \) Correction amplitude equal to leading term at \(\alpha_s = 0.2 \)

\(\rightarrow \) Important effect, need for higher order contributions
Discussion

The relative magnitude of the correction is large and the sign is negative.

Factorisation between hard production amplitude and rescattering is strongly broken.

- The magnitude of the higher order unitarity corrections in expected to be large as well.
- Theoretical uncertainty of $\sigma_{\text{excl}}(pp \rightarrow pHp)$ is higher than expected.
- Suppression or enhancement?
- Tests of the framework needed.

Key ingredients:

- Large rapidity available for the screening pomeron $Y \sim 15 - 20$
- Perturbative momenta and large mass of the rescattering state
- Partial resummation of unitarity corrections
Conclusions

- The hard rescattering correction to the exclusive Higgs boson production was evaluated and found to be large and clearly separated from soft rescattering.

- Factorisation of the hard production process from the soft rescattering was found to be broken.

- Theoretical uncertainty of the cross section for exclusive Higgs production was broadened.

- Resummation of higher order unitarity corrections is necessary.

- Practical goal – we want to have better theoretical control of the exclusive Higgs production.

- Theoretical goal – to understand the dynamics of dense gluonic systems and multiple scattering in pp collisions.