

ETH Institute for Particle Physics

HERA-LHC Workshop June 6-8, 2006, CERN

A.Holzner ETH Zurich

Outline

- $H \rightarrow ZZ^{(*)} \rightarrow 4e$
- $W/Z \rightarrow electron(s)$
- W mass from W→electron
- WZ/ZZ production
- tt dileptonic
- Summary

Not covered here: other Higgs channels, beyond SM, electrons in jets, top mass from J/Ψ etc.

Based on CMS Physics TDR Draft (June 3)

A.Holzner, ETHZ

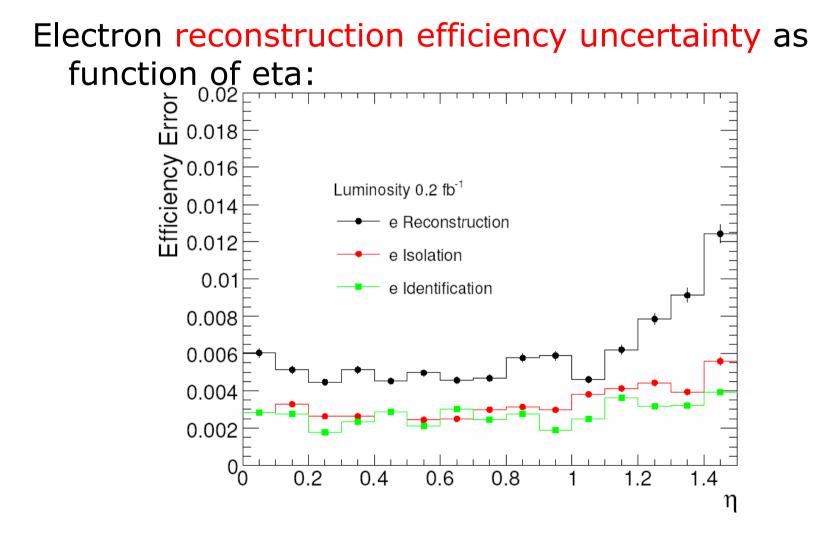
- Theoretical uncertainties (PDF and QCD scale):
 - Uncertainties on background normalization:
 - □ ~6% for direct estimation of ZZ background
 - $\hfill\square$ 2-8% for normalization to single Z—ee
 - 0.5-4% for normalization to sidebands
 - 8% (in addition) for gluon fusion cross section uncertainty

 \Box 3% for pp luminosity (at 10fb⁻¹)

ETH Institute for

- Experimental uncertainties:
 - □ Main uncertainties:
 - Knowledge of amount of material in front of ECAL
 - energy calibration
 - control of electron efficiencies
- Will rely on determining efficiencies from real data, using single $W \rightarrow ev$ and $Z \rightarrow ee$

ETH Institute for



$H \rightarrow ZZ^{(*)} \rightarrow 4e$

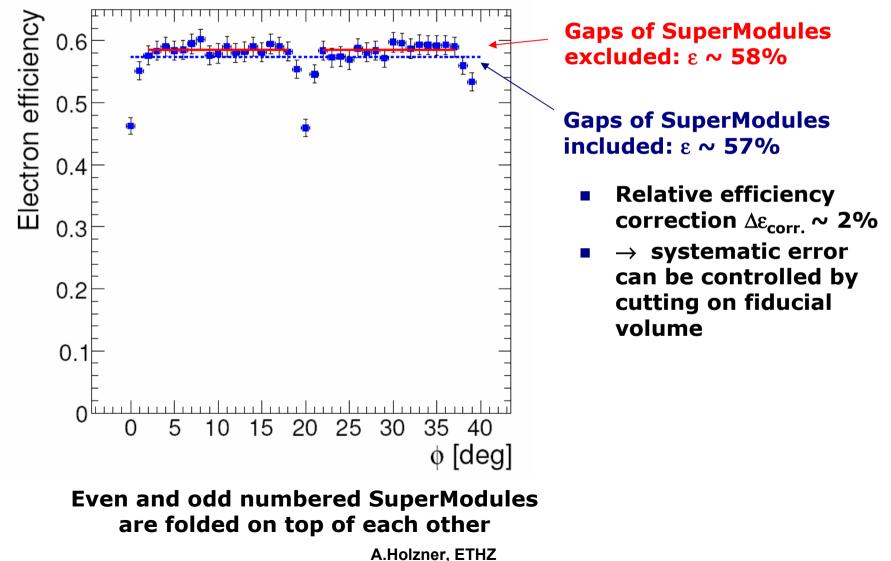
- Tracker material:
 - Methods proposed to determine it from the data:
 - use converted photon vertices
 - shape of E/p distribution
 - comparison of Z mass resolution to Monte Carlo
 - Compare track momentum at vertex and at outside of tracker \rightarrow direct estimate of $<X>/X_0$
 - demonstrated that the material could be estimated to an accuracy of about 10%
 - Claims that with 10fb⁻¹ and using single Z (i.e. improved statistics), 2% should be possible over the whole eta range
 - 2% material uncertainty has almost no effect on electron reconstruction efficiency in this channel

ETH Institute for Particle Physics

$H \rightarrow ZZ^{(*)} \rightarrow 4e$

- Electron absolute energy scale uncertainty: 0.1% can be reached
 - □ for this study 0.5% for barrel, 1% for endcaps are considered (for 10fb⁻¹)
- uncertainty on Higgs mass (for 30fb⁻¹): < 0.4% for masses at which significance is at least 3σ
- uncertainty on cross section (for 30fb⁻¹): 20-30% (15% for 60fb⁻¹)

W/Z→electron(s)


- High cross section, several events per second
- Tight electron identification cuts
- Analysis focuses on gaps between supermodules (1/36th of CMS ECAL), which is considered to be the main source of uncertainties
- Selection efficiency uncertainties:

 \square W \rightarrow ev: ~ 5 %

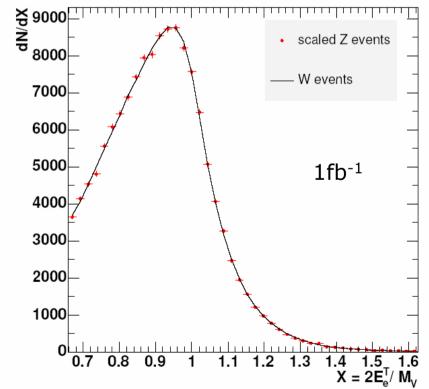
W/Z→electron(s)

HERA-LHC WS

June 6-8, 2006

9

ETH Institute for



W mass from W→electron

• Idea: Predict $\frac{d\sigma_W}{dp_T}$ from $\frac{d\sigma_Z}{dp_T}$ using theoretical

calculations and the W mass (which is fitted)

- Dominant error for 10fb⁻¹: QCD scale uncertainties (30 MeV)
- Can be improved by more precise theoretical calculations

W mass from W \rightarrow electron

Source of uncertainty	Contribution to Δm_W [MeV]
statistics	40
Background (10%)	10
Electron energy scale (0.25%)	10
Scale linearity	30
Energy resolution (8%)	5
Missing E_T scale (2%)	15
Missing E_{T} resolution (5%)	9
Recoil system	15
PDF uncertainties	20
Γ_{W}	15
р _т	30
Quadratic sum systematic	56
Quadratic sum all	69

numbers for 1fb⁻¹

WZ/ZZ to electrons

numbers for $1 fb^{-1}$

ETH Institute for Particle Physics

WZ selection

HERA-LHC WS

June 6-8, 2006

Source of uncertainty	Contribution to ∆σ (%)
Luminosity (inkl. PDF)	10.0
Trigger efficiency	1.0
Electron identification	2.6
Muon identification	3.4
Jet energy scale	5.0
$Z^0 b \overline{b}$ subtraction	12.0
Z ⁰ Z ⁰ →ℓℓℓℓ subtraction	4.0
Total uncertainty	17.4
PDF uncertainty only	+3.9/-3.5

ZZ selection: total cross section uncertainty 12.9%

 low efficiency (5%), high purity (S/B=5.5) selection

HERA-LHC WS

June 6-8, 2006

- using a likelihood for electron identification
- total cross section uncertainty (electrons and muons channels) for 10fb⁻¹:

11% (syst)±0.9% (stat) ±3% (lumi)

ETH Institute for

tt dileptonic

Source of uncertainty	Contribution to $\Delta \sigma$ (%)
Statistics	0.9
Jet energy scale	3.6
B-tag efficiency	3.8
Lepton reconstruction	1.6
Missing E_{T}	1.1
ISR and FSR	2.5
Pileup	3.6
Underlying event	4.1
Heavy quark fragmentation	5.1
PDF uncertainties	5.2
Total systematic	11
Luminosity	3

Top mass from tt dileptonic

- Uses the following kinematic constraints:
 - □ W mass (2 equations)
 - □ transverse momentum conservation (2 equations)
 - □ top mass constraints (2 equations)
- six neutrino momenta and top mass unknown (7 unknowns in total)
- Can be combined into a fourth order polynomial in one of the neutrino components
- Scan over top masses between 100 and 300 GeV
 → for each top mass there are up to four solutions
- For each mass, count the number of events for which there is at least one real solution
- Caveat: Bias of 3.5 GeV, however seems to be constant as function of the generated top mass

Top mass from tt dileptonic

- Main sources of systematic uncertainties on top mass:
 - □ approximations in the kinematic fit
 - detector effects
- Sources considered:

Source of uncertainty	Contribution uncertainty on m _{top} [GeV]
Initial/final state radiation (transverse momentum of tt system)	Shift of 0.3
Zero width approximations	Shift of 0.1
Jet energy scale after 10fb ⁻¹	1

Summary

 Various analyses (using electrons) looked at various sources of systematic uncertainties

Would be interesting if the analyses now include the 'other' sources...

- pp Luminosity uncertainty often taken as ~ 3% for 10fb⁻¹
- effect of PDF uncertainties: 5-10%
- effect of electron efficiency uncertainty: < 3% in the examples presented here