Recent results on the development of a proton Computed Tomography system

The PRIMA Collaboration (now RDH)

M. Bruzzi1,2, M. Bucciolini2,3, M. Carpinelli4,5, G. A. P. Cirrone6, C. Civinini2, G. Cuttone6, D. Lo Presti7,8, S. Pallotta2,3, C. Pugliatti7,8, N. Randazzo7, F. Romano6,9, M. Scaringella1, V. Sipala4,5, C. Stancampiano7,8, C. Talamonti2,3, E. Vanzi10, M. Zani2,3

1Energetics Departments, University of Florence, Florence, Italy
2INFN - Florence, Florence, Italy
3Department of biomedical, experimental and clinical sciences, University of Florence, Florence, Italy
4Chemistry and Pharmacy Department, University of Sassari, Sassari, Italy
5INFN Cagliari, Cagliari, Italy
6INFN - Laboratori Nazionali del Sud, Catania, Italy
7INFN - Catania, Catania, Italy
8Physics Department, University of Catania, Catania, Italy
9Centro Studi e Ricerche e Museo Storico della Fisica, Rome, Italy
10SOD Fisica Medica, Azienda Ospedaliero-Universitaria Careggi, Firenze, Italy

Vienna Conference on Instrumentation – VCI-2013 - Vienna
Proton Radiotherapy

First proposed by R.R. Wilson in 1946 "Radiological Use of Fast Protons", Radiology, 47:487-491 (1946)

Main advantages with respect to conventional gamma-Xray therapy:

i) For a fixed dose at the tumor, the protons give a lower dose to healthy tissues in front of it;

ii) The Bragg peak shape ensures that healthy tissues beyond the tumor are not damaged;

iii) Proton dose distribution could be made highly conformational to the target → intrinsically 3D

Some uncertainties to be taken into account:

i) Tumor deep estimation error for optimized treatment planning

ii) Patient positioning system
proton Computed Tomography: motivations for a proton imaging system

Patient positioning:
Presently this is done using conventional X ray tomographies (X-CT) taken before the proton treatment session and in a potentially different setup:

| pCT | Precision improvement if positioning and treatment could be done in one go |

Treatment planning:
Presently defined using X-CT

| pCT | Direct measure of the stopping power maps with the same particle used to irradiate |

but protons and photons interact differently with matter
Errors on stopping power from X-CT

Table 1. Two typical proton treatment cases and expected range errors. The expected error in the position of the distal fall-off of the dose distribution is expected to be a few millimetres in typical cases of proton therapy.

<table>
<thead>
<tr>
<th></th>
<th>Soft tissue</th>
<th>Bone</th>
<th>Total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amount (cm)</td>
<td>wer(^a) (cm)</td>
<td>Abs. error (cm)</td>
<td>Amount (cm)</td>
</tr>
<tr>
<td>Brain</td>
<td>10</td>
<td>10.3</td>
<td>0.11</td>
<td>1</td>
</tr>
<tr>
<td>Prostate (lateral beam)</td>
<td>15</td>
<td>15.5</td>
<td>0.17</td>
<td>5</td>
</tr>
</tbody>
</table>

\(^a\) Water equivalent range.

B. Schaffner and E. Pedroni
proton Computed Tomography: principles of operation

Monoenergetic Proton beam
proton Computed Tomography: principles of operation

Monoenergetic Proton beam

Take n-projections and combine them using X-CT reconstruction algorithms (FBP)

True only as first approximation: protons ≠ X rays
Tracks with multiple scattering

- **Proton true trajectory**
 - Measurements: entry and exit positions and angles

- **L'** straight line with confidence limits
 - Measurements: entry and exit position and angle

- **L** straight line with confidence limits

- **L''** curved trajectory with narrower confidence limits
 - Measurements: entry and exit position and angle + Most Likely Path (MLP) calculation
MLP example with 200MeV kinetic energy protons in 20cm of water:

Entry: \(Y(0) = 0.2\text{cm} \)
\[Y'(0) = -10\text{mrad} \]

Exit: \(Y(20) = -0.1\text{cm} \)
\[Y'(20) = +10\text{mrad} \]

Silicon microstrip detectors:
320\(\mu\text{m}\) thick
200\(\mu\text{m}\) strip pitch
pCT apparatus

- Single particle proton tracking: silicon strip detectors → MLP
- Residual energy measurement: crystal calorimeter → energy loss

A set of single event information can be processed by appropriate reconstruction algorithms to produce tomographic images.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton beam kinetic energy</td>
<td>250 -270 MeV</td>
</tr>
<tr>
<td>Proton beam rate</td>
<td>1 MHz</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>< 1 mm</td>
</tr>
<tr>
<td>Electronic density resolution</td>
<td><1%</td>
</tr>
<tr>
<td>Detector radiation hardness</td>
<td>>1000 Gy</td>
</tr>
<tr>
<td>Dose per scan</td>
<td>< 5 cGy</td>
</tr>
</tbody>
</table>
PRIMA collaboration: pCT apparatus

First test at INFN-LNS: May 2011

CATANA beam line: 62 MeV protons used to treat ocular tumors

Four x-y silicon microstrip based tracking planes

Yag:Ce calorimeter

Tracker: 4 x-y planes

Beam pipe

Proton entry and exit positions and directions

Proton residual energy

February 14th 2013 C. Civinini - INFN Firenze - VCI 2013
Tracker module

- Parallel strip read-out
- Local data storing during measurement
- Ethernet data download at measurement completion

Digital board

Front-end board

February 14th 2013
C. Civinini - INFN Firenze - VCI 2013
Si Sensor and Front-end ASIC

- 6.6 x 1.6 mm²
- 32 inputs - 32 outputs
- 670 mW power consumption
- Vcc=+3.3 V
- p on n single sided
- <100>
- 200μm thick
- 200μm strip pitch
Tracker performance

62 MeV proton minimum released charge in 200μm of silicon

180 MeV proton minimum released charge in 200μm of silicon

<table>
<thead>
<tr>
<th>sensor #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.o. at LNS test beam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strips</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>n.o. (x10^-6)</td>
<td>3.5</td>
<td>21</td>
<td>3.5</td>
<td>3.5</td>
<td>1.7</td>
<td>5.2</td>
<td><1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>n.o. at SLU test beam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strips</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>23</td>
<td>36</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>n.o. (x10^-6)</td>
<td>31</td>
<td>40</td>
<td>52</td>
<td>59</td>
<td>44</td>
<td>69</td>
<td>27</td>
<td>21</td>
</tr>
</tbody>
</table>

Data LNS+TSL

Plane	efficiency (%)
62 MeV | 97.48 |
175 MeV | 97.67 |
P1 | 97.75 |
P2 | 99.56 |
P3 | 99.69 |
P4 | 99.16 |

C. Civinini - INFN Firenze - VCI 2013
Calorimeter and DAQ

4 YAG:Ce scintillating crystals
30 x 30 mm² x 100mm each

4 Photodiodes
18x 18 mm²

<table>
<thead>
<tr>
<th>YAG:Ce properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical properties</td>
</tr>
<tr>
<td>Density [g/cm³]</td>
</tr>
<tr>
<td>Hygroscopic0</td>
</tr>
<tr>
<td>Chemical formula</td>
</tr>
<tr>
<td>Luminescence properties</td>
</tr>
<tr>
<td>Wavelength of max. emission [nm]</td>
</tr>
<tr>
<td>Decay constant [ns]</td>
</tr>
<tr>
<td>Photon yield at 300k [10³ Ph/MeV]</td>
</tr>
</tbody>
</table>
pCT image

PMMA phantom
36 projection steps: 0° → 360°
An average of 950000 events per projection
\(E_0 = 62 \text{MeV} \) INFN-LNS
Filtered Back Projection algorithm
Tomographic equation
(Wang, Med.Phys. 37(8), 2010: 4138)

\[
\int S(x, y, E_0) \, dl = \int_{E_{\text{res}}}^{E_0} \left[\frac{S}{\rho} (H_2O, E_0) \right] \left[\frac{S}{\rho} (H_2O, E) \right] \, dE
\]

Unknown stopping power distribution (at \(E_0 \))

Evaluation of the “projection” term
(through numerical integration starting from NIST tables and using the measured \(E_{\text{res}} \))
Butterworth filter: order 2, cut-off 20/128 of the Nyquist freq.

Resolution (no cut)

- noise: 1.4%
- noise: 2.4%
- noise: 6.3%

No selection cuts has been applied to the data sample

E. Vanzi et al. The PRIMA collaboration: preliminary results in FBP reconstruction of pCT data – RESMDD12 Conference
How to move from a walnutto a brain?

~20cm

Energy [MeV]
pCT upgrade

- A system similar to the one already tested
 - Microstrip tracker
 - YAG:Ce calorimeter
 - But with a $50 \times 200 \text{ mm}^2$ field of view
 - On-line data acquisition
 - 1 MHz capability
 - Rectangular aspect ratio to perform tomographies in slices

February 14th 2013
C. Civinini - INFN Firenze - VCI 2013
Silicon microstrip detectors

- 36 p on n silicon microstrip detectors (HPK):
 - 51.2 x 51.2 mm2 active area
 - <100> crystal type
 - 320 µm thickness
 - 200 µm pitch
 - 256 channels

No bad strips for all 36 detectors (9216 strips)
Errors in the overlap regions
\sim 2.75\% of the total tracker active area

Mounted on the two sides of a PCB which houses the front-end and readout electronics. Sensors are overlapped to assure hermeticity.
Slim edge option

M. Christophersen et al. SSE 81 (2013) 8–12

Strip noise @150V bias

Uncut sensor

Uncutted strip charge @150V bias

R Mori et al 2012 JINST 7 P05002
doi:10.1088/1748-0221/7/05/P05002
New tracker Front end board

- Double sided (12 layers) PCB
- 4 FE blocks on top (x-strips)
- 2 FE blocks for the y-strips to minimize load capacitance to the front-end electronics
The front end of each detector will be monitored by a Xilinx Spartan 6 FPGA indicated as Spartan Slave (SS). When a trigger occurs, the corresponding SS containing at least one hit will send the data to a central FPGA indicated as Spartan Master (SM). The SM will then send the data to the central acquisition board.
New calorimeter

Data Acquisition System

- 2x7 YAG:Ce Crystals Array
 Size: 3x3x10cm3

- Silicon Photodiodes 1.8x1.8cm2

- Fast Charge Amplifier + Shaper

- Tracker

- FlexRIO
 NI PXIe-7962R

- Ad.Mod.
 NI-5751

- RT Controller
 NI PXI-8102

- Dig. Trigger
- Disable Trigger
- 7Dig I/O GEN

- 14 Analog Channels
 - Parallel read-out
 - Sampling: 5MS/s
 - 24 Samples x event

February 14th 2013
C. Civinini - INFN Firenze - VCI 2013
Conclusions

- A pCT device will be useful to increase the effectiveness of hadron therapy (patient positioning and treatment plan precision)
- The ‘Prima’ collaboration has built a prototype (5x5cm²) capable of acquire tomographic images
- Tomographic images have been reconstructed using FBP
 - 0.9mm (FWHM) spatial resolution
 - 2.4% (r.m.s.) noise
- An upgraded detector with an extended field of view necessary to perform pre-clinical studies has been defined and it is now under construction