Detectors for astroparticle physics and dark matter searches

VCI 2013 FEB 11-15, 2013

Laura Baudis University of Zurich

Astroparticle physics: definition

- aspera-eu.org:
 - A new multidisciplinary field of research that deals with the study of particles coming from the Universe
 - Astroparticles: high-energy photons, neutrinos, cosmic rays, dark matter particles, gravitational waves
 - on the one hand: we aim to learn more about high-energy cosmic phenomena and the *violent processes* that give rise to them
 - on the other hand: astrophysical sites of violent phenomena are used as a laboratory to test the fundamentals laws

the Universe seems to be a rather violent place

Astroparticle physics: some questions

- High energy cosmic rays: origin, what are the accelerators?
- Neutrinos: mass scale, hierarchy
- Dark matter: composition, distribution

HE cosmic rays: facilities*

- Charged particles: Pierre Auger, Telescope Array; future: JEM-EUSO (on ISS), Square Kilometer array
- Gammas: HESS, MAGIC, VERITAS, ARGO/YBG; future: CTA, HAWC, LHASSO
- Neutrinos: IceCube, ANTARES, NESTOR, NEMO; proposed: KM3Net, PINGU, GVD/Baikal

HE gammas: instrumentation

- The hearts of these facilities (air/water Cherenkov detectors) the cameras use photodetectors that observe Cherenkov light (lambda ~ 300 - 600 nm)
- In general, photomultipliers (PMTs) are used because of: well established technology, large areas, large gains, single photoelectrons sensitivity
- However, issues with magnetic fields, use of high-voltage, after-pulsing, damage in daylight, bulky, high costs etc
- Other promising detector technologies: APDs operated in Geiger mode (G-APDs) -> some issues: optical cross talk, costs still high but decreasing, T-stability; intrinsic dark rate below night sky background is feasible

HE gammas: instrumentation

- New ideas: cameras out of SiPMs
- One proof-of-principle: FACT, using G-APDs

1440 channels

G-APD with solid cone

Hegra telescope structure

HE gammas: instrumentation

- Example: CTA small size telescope might use G-APDs
- Pixel size naturally matches small dishes; operation during full Moon is possible (30% more lifetime)
- Possible sensor geometry: hexagonal, ~ 100 mm² sensitive area, 4 channels

HE neutrinos and CRs: instrumentation

- Projects use photodetectors, mostly photomultipliers (PMTs)
- Issues for future detectors or upgrades: increase sensitivity, energy range, angular and/or temporal resolution, robustness
- New ideas: innovative detection units, such as multiple-small PMTs in an optical module, focal surface with thousands of small PMTs, wavelength shifting optical modules

Multi-PMT optical module for KM3Net

Wavelength shifting optical module

A production of a strate of a

5904 1-inch PMTs, JEM-EUSO focal surface

(Low-energy) Neutrinos: facilities*

- Detectors are located in underground facilities to suppress the cosmic ray flux
- Water Cherenkov detectors: SNO, SuperKamiokande; future: HyperKamiokande, proposed MEMPHYS
- Scintillators: LVD, KamLAND, Borexino; proposed LENA
- Liquid Argon: ICARUS; proposed GLACIER

(Low-energy) Neutrinos: Instrumentation

- Water/scintillator detectors observe Cherenkov/scintillation light
- (New) Ideas: hybrid photo detector with avalanche diode (HPD), large photosensor with scintillator (idea already used in Lake Baikal QUASAR, and DUMAND SMART, projects)
- LAr: idea is to detect electrons with LEM readout

8" HPD HV module (2ch 10kV/500V Max)

Optical module for LENA

Hybrid photodetector for HyperK

PM with scintillator for HyperK

LEM/THGEM for GLACIER

2D anode

LEM

Dark matter: is it made of Weakly Interacting Massive Particles?

We expect complementary information from direct detectors, from indirect detectors and from the LHC

Direct Detection of WIMPs: Principle

Goodman and Witten, PRD31, 1985

ER

- Elastic collisions with nuclei in ultra-low background detectors
- Energy of recoiling nucleus: few tens of keV

- q = momentum transfer (~ 10 100 MeV)
- μ = reduced WIMP-nucleus mass
- v = mean WIMP-velocity relative to the target
- θ = scattering angle in the center of mass system

(WIMP)

Expected Interaction Rates

Recoil rate after integration over WIMP velocity distribution

(Standard halo model with $\rho = 0.3 \text{ GeV/cm}^3$)

The experimental challenge

To observe a signal which is:

- very small (few keV)
- extremely rare (1 per ton per year?)
- embedded in a background that is millions of times higher

• Why is it challenging?

- Detection of low-energy particles done!
 e.g. micro-calorimetry with phonon readout
- Rare event searches with ultra-low backgrounds done!
 e.g SuperK, Borexino, SNO, etc

• But: can we do both?

Detection Techniques

CaWO₄, Al₂O₃: CRESST, ROSEBUD

C, F, I, Br: PICASSO, COUPP, SIMPLE Ge: Texono, CoGeNT CS₂,CF₄, ³He: DRIFT DM-TPC, MIMAC Ar+C₂H₆: Newage

LXe: XENON , LUX, ZEPLIN, Panda-X LAr: DarkSide, ArDM Nal: DAMA/LIBRA, NAIAD, ANAIS, DM-Ice Csl: KIMS

Erecoil

LXe: ZEPLIN-I, XMASS LAr, LNe: DEAP/CLEAN

Scintillation

WIMP

Phonons: Cryogenic Experiments at T~ mK

Detect a temperature increase after a particle interacts in an absorber

aura Baudis, University of Zurich, VCl2013, Vienna

Transition Edge Sensors

- The substrate is cooled well below the SC transition temperature T_c
- The temperature rise (~ μK) is measured with TES

passive tungsten grid

Example: TES for CDMS detectors

Cryogenic Experiments at T~ mK

- Advantages: high sensitivity to nuclear recoils (measure the full energy in the phonon channel); good energy resolution, low energy threshold (keV to sub-keV)
- Ratio of light/phonon or charge/phonon:
 - nuclear versus electronic recoils discrimination -> separation of S and B

Ratio of charge (or light) to phonon

Background region

Expected signal region

CDMS, CRESST, EDELWEISS

- Absorber masses from ~ 100 g to 1400 g (SuperCDMS at SNOLab)
- Currently running at Soudan, LNGS, Modane
- Future: EURECA (multi-target approach, up to 1 ton mass), SuperCDMS (150 kg) and GEODM (1 ton Ge detectors)

New phonon and charge sensors

 Interleaved z-ionization and phonon detectors (iZIPs,SuperCDMS), interdigitized charge electrodes (EDELWEISS)

EDELWEISS FID detector design

SuperCDMS iZIPs: phonon and ionization instrumentation on both faces

rface-events with reduced charge collection

charge near the surface of the detectors is collected only on one side

charge in the bulk of the detectors is collected on both sides

Scintillation/Ionization: Noble Liquids

- Noble liquids: high light and charge yield; transparent to their own light
- Large, scalable, homogeneous and self-shielding detectors

Dual-phase detectors: TPCs

- Prompt (S1) light signal after interaction in the active volume
- Charge is drifted, extracted into the gas phase and detected as *proportional light (S2)*
- Charge/light depends on dE/dx: particle identification
- 3D-position resolution: fiducial volume cuts

 S2: 645 photoelectrons detected from 32 ionization electrons which generated about 3000 S2 photons

Single-phase detectors (light only)

- XMASS at Kamioka (LXe), DEAP/CLEAN at SNOLab (LAr)
- Challenge: ultra-low absolute background

turday, February 2, 2018

XMASS at Kamioka: in water Cherenkov shield at Kamioka 835 kg LXe (100 kg fiducial), single-phase, 642 PMTs soon to take science data

MiniCLEAN at SNOLab: 500 kg LAr (150 kg fiducial) single-phase open volume under construction to run in summer 2013 DEAP-3600 at SNOLab: 3600 kg LAr (1t fiducial) single-phase detector under construction to run in 2014

Liquid xenon and liquid argcn TPCs

XENON100 at LNGS:

in conventional shield 161 kg LXe (~50 kg fiducial), dual-phase, 242 PMTs taking science data

LUX at SURF:

in water Cherenkov shield 350 kg LXe (100 kg fiducial), dualphase, 122 PMTs, physics run to start in early 2013 PandaX in conventional shield at CJPL:

stage I: 123 kg LXe (25 kg fiducial), dualphase, 180 PMTs starts in early 2013 ArDM at Canfranc:

850 kg LAr TPC 2 arrays of PMTs in commissioning at Canfranc Laboratory

661.7keV

DarkSide at LNGS

50 kg LAr (depleted in 39Ar) TPC in CTF at LNGS under construction to run 2013 - 2014

Liquid xenon and liquid argon detectors

- Under construction: XENON1T at LNGS, 3 t LXe in total
- Future and R&D: XMASS (5 t LXe), LZ (7 t LXe), DARWIN (20 t LXe/LAr)

Photodetectors in noble liquids

- So far mostly PMTs: high QE (~30-35%), work at low-T, high-P
- Ultra-low radioactivity: < 1 mBq/PMT (U/Th/K/Co/Cs)
- Quartz window: transparent to the Xe 178 nm scintillation light

Photodetectors in noble liquids

- New ideas: gas photomultipliers (GPMs)
- hybrid photodetectors (QUPID), LAAPDs (so far in EXO LXe)

QUPID for LXe/LAr detectors

GPM LXe/LAr detectors

Room temperature scintillators

- Nal: DAMA/LIBRA, ANAIS; Csl: KIMS
- New idea: DM-Ice -> 17 kg Nal deployed as fe south Pole study at the South Pole (look for annual modulation in the southern hemisphere, 2.4 km deep in ice)
- Goal: build a 250-500 kg Nal detector array, closely packed inside a pressure vessel; use IceCube as a veto

ceCub

local muon veto in ice

250 kg Nal detector array in pressure vessel

DM-Ice

local muon veto in ice

Bubble chambers

- Detect single bubbles induced by high dE/dx nuclear recoils in heavy liquid bubble chambers (with acoustic, visual or motion detectors)
- Large rejection factor for MIPs (10¹⁰), scalable to large masses, high spatial granularity
- Existing detectors: COUPP, PICASSO, SIMPLE
- Future: COUPP-500 -> ton-scale detector

Example:

n-induced event (multiple scatter)

WIMP: single scatter

COUPP 60 kg CF₃I detector installed at SNOLAB; physics run in March 2013

PICASSO at SNOLAB

Recoil range \ll 1 μ m in a liquid - very high dE/dx

Directional detectors

The WIMP landscape

Parameter space above thick blue line excluded

Phys. Rev. Lett. 109 (2012)

Green/yellow bands:

1- and 2- σ expectation, based on zero signal

Limit (dark blue):

Limit at $M_W = 50$ GeV: 7 x 10⁻⁴⁵ cm² (90% C.L.)

WIMP search evolution in time

About a factor of 10 every 2 years! Can we keep this rate of progress?

Summary

- Astroparticle physics: a growing and exciting field of research
- I have covered only a small part in this talk -> see parallel sessions
- Detectors/facilities: from micro-TPCs (few grams of material) to 1 Gton of water
- Energies: from sub-keV to > 10²⁰ eV: very different technological requirements
- Common goal: a deeper understanding of our mysterious Universe

End

DARK matter WImp search with Noble liquids

- R&D and design study for next-generation noble liquid detector
- Physics goal: build the "ultimate WIMP detector", before the possibly irreducible neutrino background takes over; probe WIMP cross sections down to ~10⁻⁴⁸ cm²

10 m

20 t LXe (and/or LAr) cryostat in large water Cherenkov shield

2vbb: EXO measurement of ¹³⁶Xe T_{1/2}

Assumptions: 50% NR acceptance, 99.5% ER discrimination Contribution of 2vbb background can be reduced by depletion

Beyond Current Detectors

- To reconstruct WIMP properties, larger detectors are needed
- Different targets are sensitive to different directions in the m_X σ_{SI} plane

Miguel Pato, Laura Baudis, Gianfranco Bertone, Roberto Ruiz de Austri, Louis E. Strigari and Roberto Trotta

Light: DAMA/LIBRA

Origin of the time variation in the observed rate:

- motion of the Earth-Sun system through the WIMP halo?
- environmental effects?
- unclear!

see also David Nygren, arXiv:1102.0815

Muon rate variation at LNGS: Amplitude: ~ 0.015; T = 1 year, ϕ = July 15±15 days * M.Selvi et al., Proc. 31st ICRC, Łódź 2009

CoGeNT: low-mass WIMPs?

- Point-contact, 330 g Ge detector at Soudan
- Energy threshold: ~ 0.5 keV ionization (~ 2 keV NR energy)
- = 2011: claim of an annual modulation at 2.8- σ level (0.5 3 keVee), ~ 450 days

Recent GoGeNT Analysis

Modulation: DAMA/LIBRA, CoGeNT

- DAMA/LIBRA (250 kg Nal, 0.82 tons-year): 8.9-σ effect
- CoGeNT (330 g HPGe, 450 d): 2.8-σ effect

- Origin of the time variation in the observed rate
 unclear!
- Movement of the Earth-Sun system through the dark matter halo?
- Environmental?

Expected Rates in a Terrestrial Detector

Particle physics

- N = number of target nuclei in a detector
- ρ_{χ} = local density of the dark matter in the Milky Way
- <v> = mean WIMP velocity relative to the target
- $M_{\chi} = WIMP$ -mass
- $\sigma_{\chi N}$ =cross section for WIMP-nucleus elastic scattering

Local Density of WIMPs in the Milky Way

 $\rho_{halo} \sim 0.3 \,\mathrm{GeV} \cdot \mathrm{cm}^{-3}$

(J. Diemand et all, Nature 454, 2008, 735-738)

 $M_W = 100 \,\mathrm{GeV} \Rightarrow$ ~ 3000 WIMPs · m⁻³

WIMP flux on Earth: ~ $10^5 \text{ cm}^{-2}\text{s}^{-1}$ (100 GeV WIMP)

Even though WIMPs are weakly interacting, this flux is large enough so that a potentially measurable fraction will elastically scatter off nuclei

~ 600 kpc

WIMP Scattering Cross Sections

- A general WIMP candidate: fermion (Dirac or Majorana), boson or scalar particle
- The most general, Lorentz invariant Lagrangian has 5 types of interactions
- In the extreme NR limit relevant for galactic WIMPs (10⁻³ c) the interactions leading to WIMP-nuclei scattering are classified as (Goodman and Witten, 1985):
 - scalar interactions (WIMPs couple to nuclear mass, from the scalar, vector, tensor part of L)

$$\sigma_{SI} \sim \frac{\mu^2}{m_\chi^2} \left[Z f_p + (A - Z) f_n \right]^2$$

f_p, f_n: effective couplings to protons and neutrons

spin-spin interactions (WIMPs couple to the nuclear spin, from the axial part of L)

$$\sigma_{SD} \sim \mu^2 \frac{J_N + 1}{J_N} \left(a_p \langle S_p \rangle + a_n \langle S_n \rangle \right)^2$$

a_p, a_n: effective couplings to protons and neutrons

 $\langle S_p \rangle$ and $\langle S_n \rangle$

expectation values of the p and n spins within the nucleus

WIMP scattering cross section

$$\sigma_0 \sim 10^{-39} \,\mathrm{cm}^2$$

 $\sigma_0 \sim 10^{-45} \,\mathrm{cm}^2$

How to separate WIMPs from backgrounds

- Signatures:
 - nuclear recoils
 - annual modulation of the recoil spectrum
 - diurnal modulation of the flux direction

The background noise

- Electromagnetic radiation
 - natural radioactivity in detector and shield materials
 - airborne radon (²²²Rn)
 - cosmic activation of materials during storage/ transportation at the Earth's surface

Neutrons

- radiogenic from (α, n) and fission reactions
- cosmogenic from spallation of nuclei in materials by cosmic muons

Alpha particles

- ²¹⁰Pb decays at the detector surfaces
- nuclear recoils from the Rn daughters

Cosmic rays: operate deep underground

