

Embedded Pitch Adapters for the ATLAS Tracker Upgrade

M. Ullán¹*, V. Benítez¹, G. Pellegrini¹, C. Fleta¹, M. Lozano¹, C. Lacasta², U. Soldevila², C. García²

Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Campus UAB, 08193 Cerdanyola, Barcelona, Spain. * Miguel.Ullan@imb-cnm.csic.es

² Instituto de Fisica Corpuscular (IFIC, CSIC-UV), Valencia, Spain.

INTRODUCTION

FRAMEWORK

- ✦ In current ATLAS-SCT modules, pitch adapters are used
 - \checkmark Provide pitch adaptation
 - ✓ Facilitate the bonding

But

- ★ Double the number of bonds
- ✗ Increase material budget
- ✗ Increase tooling and costs
- In the ATLAS Upgrade groups want to avoid pitch adapters

PROPOSAL:

- Embedded Pitch Adapters:
 - Our proposal is to build the pitch adapters inside the sensor
- Facilitate bonding
- Same number of bonds
- Insignificant material budget increase
- > No new tooling

- ➤ Difficult bonding
- ✗ Risk of yield reduction
- ★ Increase of repairs

CHALLENGES

- Inter-metal layer PECVD SiO₂
- Cross-talk: signal transfer between crossing metal tracks
- Signal pickup: In the second metal layer

EXPERIMENT

PETALET PROTOTYPE

ATLAS Upgrade End-Cap section will be made of petal-shape structures

To concentrate on a smaller concept the "**petalet**" prototype is proposed which allows to propose and test new solutions to the issues

- DESIGN Built-in fanins on the detector, using second metal layer
- Optimization criteria
 - ✓ Minimum track length.
 - ✓ Maximum crossing angle
- Design method: Constant track angle: Maximum keeping the minimum distance between tracks ($20 \mu m$).

- \blacktriangleright Big Sensor: 4.5%
- \succ Top Sensors: 5.4%

- Clean Room facilities at CNM-Barcelona.
- 300 um thick Si high-resistivity wafers.
- Several batches with and without double metal
- P-stop Boron implant doses: 4 e13 /cm2
- \succ 9 photolithography steps for 2 metals technology.

TEST

TECHNOLOGICAL TEST

- Metals Sheet Resistance: **Metal-1: 0,055 +/- 0,003 Ω/ Metal-2: 0,021 +/- 0,001 Ω/**□
- M1-M2 Via Resistance: 0,046 +/- 0,023 Ω
- Capacitance M1-M2: 3700 +/- 100 pF/cm²

Yield:

Optical inspection: 1 possible defect in 1 via in ~3000 channels

PERFORMACE TEST ➢ Cross-talk Laser tests: Signal readout in every channel \succ No signal seen in crossing channels Laser

CONCLUSION

- > A method to facilitate the interconnection between sensors and Front-end electronics avoiding the use of pitch adaptors has been proposed. Embedded pitch adaptors have been designed and fabricated on
 - prototype sensors for the ATLAS Upgrade Inner Tracker
- Technological test show satisfactory results
- Cross-talk and pickup remains within manageable values

FUTURE WORK

- Build petalet prototypes with embedded pitch adaptors
- Test Beam
 - o Efficiency loss
- Try different interlayer materials: o BCB, SU8, laminates,...