The LHCb Detector Upgrade

H. Schindler on behalf of the LHCb collaboration

Vienna Conference on Instrumentation 2013
In a Nutshell

- LHCb is an LHC experiment designed for heavy quark flavour physics.
- The detector is a single-arm forward spectrometer, covering $2 < \eta < 5$.
- Tracking system consists of Vertex Locator (VELO), followed by one tracking station upstream and three stations downstream of 4 Tm dipole magnet.
- Particle identification provided by two RICH detectors, calorimeters and muon system.
Readout

- Calorimeter and muon stations provide 40 MHz input to L0 trigger.
- All other detectors are read out at 1 MHz.

L0 Trigger

- Selection based on p_T and E_T cuts
- 450 kHz h^\pm / 400 kHz $\mu, \mu\mu$ / 150 kHz e, γ

High Level Trigger

1. **HLT1**
 - Reconstruct VELO tracks and primary vertices
 - Select events with at least one track matching p, p_T, impact parameter, and track quality cuts
 - ~ 30 kHz output rate

2. **HLT2**
 - Full reconstruction
 - Combination of inclusive and exclusive selections
Why Upgrading?

- The experiment is performing well (→ talk by F. Dettori), operating in 2012 at $\mathcal{L} = 4 \times 10^{32}\text{cm}^{-2}\text{s}^{-1}$ (twice design luminosity) corresponding to $\sim 2\text{ fb}^{-1}$ per year.
- Going to higher luminosity is inhibited by 1 MHz detector readout rate in combination with limited discriminating power of L0 hardware trigger (saturation of trigger yield for hadronic channels).

Upgrade Strategy

- Read out whole detector at every bunch-crossing.
- Move to fully software-based trigger.
Trigger Upgrade

\(p-p \) collisions

\[\rightarrow \]

Low Level Trigger (hardware)

\(1 - 40 \text{ MHz} \)

\[\rightarrow \]

HLT (CPU farm)

\(20 \text{ kHz} \)

\[\rightarrow \]

Offline

LLT

- similar to existing L0 trigger
- throttle input to HLT depending on size of CPU farm

High Level Trigger

- tight time-budget
- HLT is guiding factor for detector design
- use of hardware “accelerators” (e.g. GPUs) being investigated

\[\text{Signal efficiency} \]

\[\text{MC} \quad 10^{33} \text{ cm}^{-2}\text{s}^{-1} \]

\[\text{now} \quad 10 \text{ MHz} \]
LHCb Upgrade and LHC

- Target luminosity is $\mathcal{L} = 1 - 2 \times 10^{33}\,\text{cm}^{-2}\text{s}^{-1}$.
- Key requirement is 25 ns bunch spacing.
- Sub-detectors being replaced are designed to be able to operate at a luminosity of $\mathcal{L} = 2 \times 10^{33}\,\text{cm}^{-2}\text{s}^{-1}$.
- Installation is planned for Long Shutdown 2 of LHC in 2018/19.
- Upgraded experiment is expected to collect 50 fb$^{-1}$ over 10 years.

Physics Motivation

- Perform precision measurements of CP asymmetries and search for physics beyond the Standard Model through indirect effects of new states.
- Expected statistical sensitivities become comparable to theoretical uncertainties.
- Enhanced trigger flexibility allows expansion of physics programme \rightarrow general-purpose experiment in forward region.
LHCb Upgrade

Consequences of Readout Scheme

- Front-end electronics need to be replaced (or modified).
- Silicon detectors (and RICH HPDs) need to be replaced due to embedded electronics.

Challenges for Detectors

- 40 MHz readout, data rates
- radiation tolerance
- occupancies
- pileup
- material budget
Current Detector

- Present VELO (talk by S. de Capua) consists of 21 stations of R and ϕ measuring microstrip sensors along z.
- Detector operates in vacuum. Left and right halves can be moved into/out of the beam.

Upgrade Option 1: Pixels

- ASIC derived from Timepix/Medipix family (55 μm pitch)
- sensor R&D focussing on planar silicon sensors

Upgrade Option 2: Strips

- sensors conceptually similar to existing VELO (R/ϕ layout)
- finer pitch and segmentation, reduced thickness and inner radius
Vertex Locator

Radiation Environment
- Irradiation profile is strongly non-uniform.
- Expected fluence after 50 fb$^{-1}$ at current inner sensor radius $\sim 4 \times 10^{15} n_{eq} \text{cm}^{-2}$.

Aperture
- Primary (beam) and secondary (VELO) vacuum are separated by thin Al box (“RF foil”).
- Inner radius of RF foil could be reduced from 5.5 mm to 3.5 mm.

Performance Considerations
- Reconstruction efficiency, speed and ghost rate are crucial for HLT performance.
 - Simulations predict excellent pattern recognition performance for pixels (ghost rate $\lesssim 1\%$).
- Impact parameter resolution depends on
 - single hit resolution,
 - distance to interaction point (\rightarrow reduce inner radius),
 - material (favours strip option).
Cooling

- Sensors need to be kept at $\lesssim -20^\circ$ C.
- As for current detector, evaporative CO$_2$ cooling will be used but module interface needs redesign.
 - Micro-channels would be attractive solution for both pixels and strips.
 - Other concepts (diamond, TPG, carbon foam substrates) also being explored.

Sensors

- Radiation hardness is critical issue.
- Extensive testbeam programme for pixel sensor characterisation (different vendors, guard ring designs, irradiation levels).

RF Foil

- RF foil constitutes $\sim 40\%$ of present VELO material budget \rightarrow can it be made thinner?
- Prototype using new manufacturing technique (milling out of one box) produced.
- Improved modelling in simulation.
Current Detector

- Upstream station (TT) and inner regions (close to beam pipe) of downstream stations (IT) are silicon strip detectors (→ talk by M. Tobin).
- Outer region of downstream stations instrumented by straw tubes (OT).
- Main problem in upgrade scenario is high occupancy (≳ 40%) of straw tubes in central region.
Downstream Tracking Stations

Two technology options are currently being investigated.

1. **new silicon strip detector with larger coverage**
 - in combination with shorter straw tubes in central region

2. **replacement of straw tubes (in central region) by scintillating fibres**
Two technology options are currently being investigated.

1. new silicon strip detector with larger coverage
 - in combination with shorter straw tubes in central region

2. replacement of straw tubes (in central region) by scintillating fibres
Tracker

Downstream Tracking Stations

Two technology options are currently being investigated.

1. new silicon strip detector with larger coverage
 - in combination with shorter straw tubes in central region

2. replacement of straw tubes (in central region) by scintillating fibres

Upstream Tracker

- Technology: silicon strip sensors with
 - reduced thickness, finer segmentation, improved coverage
- R&D so far focussed on mechanics
 - cooling, material minimization, beampipe interface
- Simulation studies
 - optimise global pattern recognition, ghost rejection and trigger performance.
Fibre Tracker

Concept

- Active element: five layers of 2.5 m long scintillating fibres (250 µm diameter).
 - Multi-clad blue emitting fibre chosen as baseline.
- Readout at fibre ends by silicon photo-multipliers (outside acceptance).
- Expected performance: \(\sim 60 - 100 \) µm spatial resolution, \(\sim 15 \) photoelectrons / mip
- Main challenges: radiation damage, noise cluster rate, mechanical precision

Radiation Hardness

- Ongoing programme to characterise irradiated fibres and SiPMs up to dose/fluence at 50 fb\(^{-1}\).
- SiPMs need to be operated cold.
Silicon Tracker

Occupancy
- Four-fold increase of Inner Tracker area reduces straw tube occupancy to < 25%.
- Further occupancy reduction possible by
 - minimization of IT material (reduce OT hits from secondaries in IT)
 - faster gas in OT.

Low-Mass Module R&D
- Separation of FE electronics from sensors using thin flex cable (thermal insulation).
- Prototype for convective air cooling
- Daisy-chaining of silicon sensors

Electronics
- New strip chip with on-chip zero-suppression and common-mode correction being developed.
- Synergy with upstream tracker and VELO (strip option).
Less is More

- First muon station (M1) as well as preshower (PS) and scintillating pad detector (SPD) will be removed due to reduced role in upgrade trigger scheme.
- Due to occupancy, aerogel radiator in RICH1 will be removed (leaving CF$_4$ in RICH1 and C$_4$F$_{10}$ in RICH2).
Less is More

- First muon station (M1) as well as preshower (PS) and scintillating pad detector (SPD) will be removed due to reduced role in upgrade trigger scheme.
- Due to occupancy, aerogel radiator in RICH1 will be removed (leaving CF$_4$ in RICH1 and C$_4$F$_{10}$ in RICH2).
Photon Detectors

- R&D focussed on MaPMTs, potential candidate is Hamamatsu R11265.
- Custom readout ASIC (CLARO) being developed (alternative option: Maroc-3).

Operation at $\mathcal{L} = 2 \times 10^{33} \text{cm}^{-2}\text{s}^{-1}$

- Preliminary simulation results indicate high occupancy in RICH1 ($\gtrsim 30\%$).
- Several ideas to cope with occupancy problem are being discussed, e.g.
 - new optics to spread out the rings,
 - remove RICH1 and adapt RICH2 to encompass two radiator gases.
Photon Detectors

- R&D focussed on MaPMTs, potential candidate is Hamamatsu R11265.
- Custom readout ASIC (CLARO) being developed (alternative option: Maroc-3).

Operation at \(\mathcal{L} = 2 \times 10^{33} \text{cm}^{-2}\text{s}^{-1} \)

- Preliminary simulation results indicate high occupancy in RICH1 (\(\geq 30\% \)).
- Several ideas to cope with occupancy problem are being discussed, e.g.
 - new optics to spread out the rings,
 - remove RICH1 and adapt RICH2 to encompass two radiator gases.

TORCH

- Idea: time-of-flight measurement using Cherenkov photons from 1 cm thick quartz plate to enhance PID at \(< 10 \text{ GeV/c} \).
- Required time resolution: \(\sim 15 \text{ ps per track} \).
- Not part of baseline for 2018, but subject of active R&D programme.
Modifications for $\mathcal{L} = 1 \times 10^{33} \text{cm}^{-2}\text{s}^{-1}$

- Muon front-end electronics are almost compatible.
- Tolerable aging and rate effects (e.g. space charge) in Muon MWPCs.
- CALO PMTs need to be operated at reduced HV \rightarrow development of new front-end electronics with higher amplifier gain.

Higher Luminosity

- Ongoing studies to evaluate performance at $\mathcal{L} = 2 \times 10^{33} \text{cm}^{-2}\text{s}^{-1}$.
- Central ECAL modules (probably) need to be replaced.
- Rate capability of muon chambers close to beam pipe would need to be improved.
 - reduction of pad size or alternative technologies (e.g. GEMs)
 - additional shielding
Roadmap

Milestones

- Letter of Intent submitted in 2011 and endorsed by LHCC.
- Follow-up document (Framework TDR) submitted in 2012 and endorsed by LHCC.
- Sub-detector Technical Design Reports to follow in 2013.
LHCb Upgrade

- LHCb will be upgraded in 2018 to exploit higher luminosity with better efficiency.
- This is achieved by triggerless readout and software-based trigger.
- Detector R&D programme is in full swing.
- Key challenges are
 - 40 MHz readout,
 - radiation tolerance,
 - robust and fast reconstruction,
 - material budget.
- Key technology choices to be taken in next months for
 - VELO (pixels or microstrips),
 - tracking stations (silicon strips or scintillating fibres), and
 - RICH.
More Information

- Letter of Intent for the LHCb Upgrade, CERN-LHCC-2011-001
- Framework TDR for the LHCb Upgrade, CERN-LHCC-2012-007

Other LHCb Talks

- F. Dettori, Performance of the LHCb detector during the LHC proton runs 2010 – 2012
- S. de Capua, Performance and Radiation Damage Effects in the LHCb Vertex Locator
- M. Tobin, The LHCb Silicon Tracker