The LHCb Detector Upgrade

H. Schindler on behalf of the LHCb collaboration

Vienna Conference on Instrumentation 2013

LHCb

In a Nutshell

- LHCb is an LHC experiment designed for heavy quark flavour physics.
- The detector is a single-arm forward spectrometer, covering 2 $<\eta<$ 5.
- Tracking system consists of Vertex Locator (VELO), followed by one tracking station upstream and three stations downstream of 4 Tm dipole magnet.
- Particle identification provided by two RICH detectors, calorimeters and muon system.

Readout

- Calorimeter and muon stations provide 40 MHz input to L0 trigger.
- All other detectors are read out at 1 MHz.

LHCb Upgrade

Why Upgrading?

- The experiment is performing well (\rightarrow talk by F. Dettori), operating in 2012 at $\mathcal{L} = 4 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$ (twice design luminosity) corresponding to $\sim 2 \text{ fb}^{-1}$ per year.
- Going to higher luminosity is inhibited by 1 MHz detector readout rate in combination with limited discriminating power of L0 hardware trigger (saturation of trigger yield for hadronic channels).

Upgrade Strategy

- Read out whole detector at every bunch-crossing.
- Move to fully software-based trigger.

Trigger Upgrade

LLT

- similar to existing L0 trigger
- throttle input to HLT depending on size of CPU farm

High Level Trigger

- tight time-budget
- HLT is guiding factor for detector design
- use of hardware "accelerators" (e. g. GPUs) being investigated

LHCb Upgrade and LHC

- Target luminosity is $\mathcal{L} = 1 2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$.
- Key requirement is 25 ns bunch spacing.
- Sub-detectors being replaced are designed to be able to operate at a luminosity of ${\cal L}=2\times 10^{33} cm^{-2} s^{-1}.$
- Installation is planned for Long Shutdown 2 of LHC in 2018/19.
- Upgraded experiment is expected to collect 50 fb⁻¹ over 10 years.

Physics Motivation

- Perform precision measurements of *CP* asymmetries and search for physics beyond the Standard Model through indirect effects of new states.
- Expected statistical sensitivities become comparable to theoretical uncertainties.
- Enhanced trigger flexibility allows expansion of physics programme \rightarrow general-purpose experiment in forward region.

LHCb Upgrade

Consequences of Readout Scheme

- Front-end electronics need to be replaced (or modified).
- Silicon detectors (and RICH HPDs) need to be replaced due to embedded electronics.

Challenges for Detectors

- 40 MHz readout, data rates
- radiation tolerance
- occupancies
- pileup
- material budget

Current Detector

- Present VELO (\rightarrow talk by S. de Capua) consists of 21 stations of R and ϕ measuring microstrip sensors along z.
- Detector operates in vacuum. Left and right halves can be moved into/out of the beam.

Upgrade Option 1: Pixels

- ASIC derived from Timepix/Medipix family (55 µm pitch)
- sensor R&D focussing on planar silicon sensors

Upgrade Option 2: Strips

- sensors conceptually similar to existing VELO (R/ϕ layout)
- finer pitch and segmentation, reduced thickness and inner radius

prototype strip sensor

Vertex Locator

Radiation Environment

- Irradiation profile is strongly non-uniform.
- Expected fluence after 50 fb⁻¹ at current inner sensor radius $\sim 4 \times 10^{15} n_{eq} \text{ cm}^{-2}$.

Aperture

- Primary (beam) and secondary (VELO) vacuum are separated by thin Al box ("RF foil").
- Inner radius of RF foil could be reduced from 5.5 mm to 3.5 mm.

Performance Considerations

- Reconstruction efficiency, speed and ghost rate are crucial for HLT performance.
 - $\bullet\,$ Simulations predict excellent pattern recognition performance for pixels (ghost rate $\lesssim 1\%$).
- Impact parameter resolution depends on
 - single hit resolution,
 - distance to interaction point (→ reduce inner radius),
 - material (favours strip option).

3.5 mm

Vertex Locator

Cooling

- \bullet Sensors need to be kept at $\lesssim -20^\circ$ C.
- As for current detector, evaporative CO₂ cooling will be used but module interface needs redesign.
 - Micro-channels would be attractive solution for both pixels and strips.
 - Other concepts (diamond, TPG, carbon foam substrates) also being explored.

Sensors

- Radiation hardness is critical issue.
- Extensive testbeam programme for pixel sensor characterisation (different vendors, guard ring designs, irradiation levels).

RF Foil

- RF foil constitutes \sim 40% of present VELO material budget \rightarrow can it be made thinner?
- Prototype using new manufacturing technique (milling out of one box) produced.
- Improved modelling in simulation.

micro-channel prototype

irrad. slim-edge sensor on Medipix3 (testbeam setup)

L shaped foil prototype

Current Detector

- Upstream station (TT) and inner regions (close to beam pipe) of downstream stations (IT) are silicon strip detectors (\rightarrow talk by M. Tobin).
- Outer region of downstream stations instrumented by straw tubes (OT).
- $\bullet\,$ Main problem in upgrade scenario is high occupancy ($\gtrsim40\%)$ of straw tubes in central region.

Downstream Tracking Stations

Two technology options are currently being investigated.

- Inew silicon strip detector with larger coverage
 - in combination with shorter straw tubes in central region
- eplacement of straw tubes (in central region) by scintillating fibres

Downstream Tracking Stations

Two technology options are currently being investigated.

- Inew silicon strip detector with larger coverage
 - in combination with shorter straw tubes in central region
- eplacement of straw tubes (in central region) by scintillating fibres

6 m

Downstream Tracking Stations

Two technology options are currently being investigated.

- Inew silicon strip detector with larger coverage
 - in combination with shorter straw tubes in central region
- eplacement of straw tubes (in central region) by scintillating fibres

Upstream Tracker

- Technology: silicon strip sensors with
 - reduced thickness, finer segmentation, improved coverage
- R&D so far focussed on mechanics
 - · cooling, material minimization, beampipe interface
- Simulation studies
 - optimise global pattern recognition, ghost rejection and trigger performance.

Fibre Tracker

Concept

- $\bullet\,$ Active element: five layers of 2.5 m long scintillating fibres (250 μm diameter).
 - Multi-clad blue emitting fibre chosen as baseline.
- Readout at fibre ends by silicon photo-multipliers (outside acceptance).
- $\bullet\,$ Expected performance: \sim 60 100 μm spatial resolution, \sim 15 photoelectrons / mip
- Main challenges: radiation damage, noise cluster rate, mechanical precision

Radiation Hardness

- Ongoing programme to characterise irradiated fibres and SiPMs up to dose/fluence at 50 fb⁻¹.
- SiPMs need to be operated cold.

Silicon Tracker

Occupancy

- Four-fold increase of Inner Tracker area reduces straw tube occupancy to < 25%.
- Further occupancy reduction possible by
 - minimization of IT material (reduce OT hits from secondaries in IT)
 - faster gas in OT.

Low-Mass Module R&D

- Separation of FE electronics from sensors using thin flex cable (thermal insulation).
- Prototype for convective air cooling
- Daisy-chaining of silicon sensors

Electronics

- New strip chip with on-chip zero-suppression and common-mode correction being developed.
- Synergy with upstream tracker and VELO (strip option).

Less is More

- First muon station (M1) as well as preshower (PS) and scintillating pad detector (SPD) will be removed due to reduced role in upgrade trigger scheme.
- \bullet Due to occupancy, aerogel radiator in RICH1 will be removed (leaving CF_4 in RICH1 and C_4F_{10} in RICH2).

Less is More

- First muon station (M1) as well as preshower (PS) and scintillating pad detector (SPD) will be removed due to reduced role in upgrade trigger scheme.
- \bullet Due to occupancy, aerogel radiator in RICH1 will be removed (leaving CF_4 in RICH1 and C_4F_{10} in RICH2).

RICH

Photon Detectors

- R&D focussed on MaPMTs, potential candidate is Hamamatsu R11265.
- Custom readout ASIC (CLARO) being developed (alternative option: Maroc-3).

Operation at $\mathcal{L}=2 imes 10^{33} ext{cm}^{-2} ext{s}^{-1}$

- Preliminary simulation results indicate high occupancy in RICH1 (\gtrsim 30%).
- Several ideas to cope with occupancy problem are being discussed, e. g.
 - new optics to spread out the rings,
 - remove RICH1 and adapt RICH2 to encompass two radiator gases.

Photon Detectors

- R&D focussed on MaPMTs, potential candidate is Hamamatsu R11265.
- Custom readout ASIC (CLARO) being developed (alternative option: Maroc-3).

Operation at $\mathcal{L}=2 imes 10^{33} \text{cm}^{-2} \text{s}^{-1}$

- Preliminary simulation results indicate high occupancy in RICH1 (\gtrsim 30%).
- Several ideas to cope with occupancy problem are being discussed, e. g.
 - new optics to spread out the rings,
 - remove RICH1 and adapt RICH2 to encompass two radiator gases.

TORCH

- Idea: time-of-flight measurement using Cherenkov photons from 1 cm thick quartz plate to enhance PID at < 10 GeV/c.
- Required time resolution: \sim 15 ps per track.
- Not part of baseline for 2018, but subject of active R&D programme.

Modifications for $\mathcal{L}=1\times 10^{33} \text{cm}^{-2}\text{s}^{-1}$

- Muon front-end electronics are almost compatible.
- Tolerable aging and rate effects (e. g. space charge) in Muon MWPCs.
- $\bullet\,$ CALO PMTs need to be operated at reduced HV \rightarrow development of new front-end electronics with higher amplifier gain.

Higher Luminosity

- Ongoing studies to evaluate performance at $\mathcal{L} = 2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$.
- Central ECAL modules (probably) need to be replaced.
- Rate capability of muon chambers close to beam pipe would need to be improved.
 - reduction of pad size or alternative technologies (e. g. GEMs)
 - additional shielding

Milestones

- Letter of Intent submitted in 2011 and endorsed by LHCC.
- Follow-up document (Framework TDR) submitted in 2012 and endorsed by LHCC.
- Sub-detector Technical Design Reports to follow in 2013.

LHCb Upgrade

- LHCb will be upgraded in 2018 to exploit higher luminosity with better efficiency.
- This is achieved by triggerless readout and software-based trigger.
- Detector R&D programme is in full swing.
- Key challenges are
 - 40 MHz readout,
 - radiation tolerance,
 - robust and fast reconstruction,
 - material budget.
- Key technology choices to be taken in next months for
 - VELO (pixels or microstrips),
 - tracking stations (silicon strips or scintillating fibres), and
 - RICH.

More Information

- Letter of Intent for the LHCb Upgrade, CERN-LHCC-2011-001
- Framework TDR for the LHCb Upgrade, CERN-LHCC-2012-007
- Implications of LHCb measurements and future prospects, CERN-PH-EP-2012-334

Other LHCb Talks

- F. Dettori, Performance of the LHCb detector during the LHC proton runs 2010 2012
- S. de Capua, Performance and Radiation Damage Effects in the LHCb Vertex Locator
- M. Tobin, The LHCb Silicon Tracker