Beam test of FARICH prototype with DPC (dSiPM)

Presented by Sergey Kononov (BINP)

Budker Institute of Nuclear Physics, Novosibirsk, Russia

A.F. Danilyuk
Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia

D.A. Finogeev, T.L. Karavicheva, A.B. Kurepin, V.I. Razin, A.I. Reshetin, E.A. Usenko
Institute of Nuclear Research RAS, Moscow, Russia

C. Degenhardt, R. Dorscheid, T. Frach, O. Muelhens, R. Schulze, B. Zwaans, Philips Digital Photon Counting, Aachen, Germany
FARICH concept

Focusing Aerogel RICH – FARICH

Improves proximity focusing design by reducing radiator thickness contribution into the Cherenkov angle resolution

Single ring option

Multi-ring option

T. Iijima et al., NIM A548 (2005) 383
A. Yu. Barnyakov et al., NIM A553 (2005) 70
Multi-layer ‘focusing’ aerogels

- Produced by Boreskov Institute of Catalysis (Novosibirsk) in cooperation with Budker Institute since 2004

First 4-layer sample produced in 2004
A.Yu.Barnyakov et al., NIM A553 (2005) 70
FARICH projects and proposals

FARICH for Super Charm-Tau Factory (Novosibirsk)
Particle ID: μ/π up to 1.7 GeV/c
$21\,m^2$ detector area (SiPMs)
~1M channels

FARICH for ALICE HMPID upgrade
Particle ID: π/K up to 10 GeV/c, K/p up to 15 GeV/c
$3m^2$ detector area (SiPMs)

Forward Spectrometer RICH for PANDA
Particle ID: $\pi/K/p$ up to 10 GeV/c
$3m^2$ detector area (MaPMTs or SiPMs)
Philips Digital Photon Counting (PDPC)

Philips Digital Photon Counting is designing and manufacturing scalable detectors based on digital Silicon Photomultiplier (dSiPM) technology – a new type of advanced solid state light detector, now called Digital Photon Counter (DPC).

Potential Applications

• Medical Imaging
• Life Sciences
• High Energy Physics
• Material Testing/Detection
• Process Control
DPC: Front-end Digitization by Integration of SPAD & CMOS Electronics

analog SiPM

Summing all cell outputs leads to an analog output signal and limited performance

Digital Photon Counter (DPC)

TDC and photon counter

Digital Cells

Digital output of
- Number of photons
- Time-stamp

Integrated readout electronics is the key element to superior detector performance

DPC hierarchy for FARICH prototype

Pixel = 1 amplitude ch
6396 cells (DPC6400-22-44)
3200 cells (DPC3200-22-44)

Die = 1 timing ch

Pixels in module packing density ~70%
First test of DPC in High Energy Physics: FARICH Detector @ CERN, June 2012

Main objective:
Proof of concept: full Cherenkov ring detection with DPC array

Timeline:
- Started to envisage: 28/02/12
- Requirements for the FARICH prototype test setup fixed: 30/04/12
- Prototype operational @ Aachen Labs: 03/06/12
- Installed @ CERN: 12/06/12
- Subsequent beam runs for 12 days until 25/06/12 with smooth setup operation

Fast prototyping!
FARICH prototype with DPC: engineered and made by PDPC

- DPC detector 20x20 cm²
- Aerogel sample container on movable table
- Operation at -40°C to suppress dark counts: DCR ~ 100 kcps/die. Blow dry N₂ to avoid condensation.

Process thermostat
LAUDA Integral XT

Thermal insulation:
10 cm styrofoam
FARICH prototype with DPC...

4-layer aerogel
- $n_{\text{max}} = 1.046$
- Thickness 37.5 mm
- Calculated focal distance 200 mm
- Hermetic container with plexiglass window to avoid moisture condensation on aerogel

Square matrix $20 \times 20 \text{ cm}^2$
- Sensors: DPC3200-22-44
- 3x3 modules = 6x6 tiles = 24x24 dies = 48x48 pixels in total
- 576 time channels
- 2304 amplitude (position) channels
- 4 levels of FPGA readout: tiles, modules, bus boards, test board
FARICH prototype at CERN PS T10 beam channel

Inventor of DPC
Thomas Frach
Observation of Cherenkov ring

Test conditions

- Positive polarity $e^+, \mu^+, \pi^+, K^+, p$
- Momentum: 1 - 6 GeV/c
- Trigger: a pair of sc. counters 1.5x1.5 cm2 in coincidence separated by ~3 m
- No external tracking, particle ID, precise timing of trigger
- Hardware hit selection in a programmable time window to fit in data bandwidth

Pixel hit map

$\text{hits.yindex:hits.xindex}$
Event-by-event ring fit

Hit selection and ring fit:
- Reject central hits
- Select hits in 4 ns time window
- More than 3 selected hits per event
- 4 parameters fitted: X_{center}, Y_{center}, R, τ_0

![Diagram of hits and fit parameters](image)

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>18</td>
</tr>
<tr>
<td>Mean</td>
<td>0.06901</td>
</tr>
<tr>
<td>RMS</td>
<td>0.2349</td>
</tr>
</tbody>
</table>
Die-to-die clock skew correction

All dies hit times w.r.t. mean event time

~80 photons/die

Clock skew correction between dies

FWHM 66 ps
Timing correction by ring data

Hit timing vs ϕ-position

Before

After
Timing resolution for Cherenkov photons

Fit two gaussians plus constant. 90% of area is contained in the narrow gaussian.

\[\sigma_{\text{narrow}} = 48 \text{ps} \]
Ring center adjusted distributions
P=6 GeV/c, L=200mm

Ring center position in detector plane

Hit positions
Number of photoelectrons

The graph shows the distribution of photoelectrons with the number of pixels hit on the x-axis and the number of photoelectrons on the y-axis. The data includes measurements for protons, electrons (e), muons (μ), and pions (π). The histogram indicates that the mean number of photoelectrons is 13.84 with a RMS of 3.936. The total number of entries is 2158095.
Radial distributions
P=6 GeV/c, L=200mm

Hit distribution on radius

Event distribution on radius

entries: 1152798

entries: 63940
Ring radius distribution fit

Fit function
sum of three gaussians for each particle type with distinct radius plus gaussian background (to account for non-monochromatic particles in the beam)

Free parameters:
- Particle momentum
- Ring radius of rightmost gaussian (other radii derived from Cherenkov law)
- Constants and sigmas of all gaussians

Fixed parameter:
- Effective refractive index \(n_{\text{eff}} = 1.038 \)
Aerogel-detector distance dependence “pions” at P=6 GeV/c

\[R = p_0 + p_1 L \]

\[\sigma_t \approx 0.8\text{mm} \]
Momentum dependence

6 points on momentum

Not more than 3 particle peaks are fit in each point
Momentum dependence...

Ring radius vs $\beta\gamma = p/M$

Ring radius σ vs $\beta\gamma$

Cherenkov law fit

$$R = L \tan \theta'_c$$
Rather idealized simulation for
P=6 GeV/c gives
N_{pe} (π) = 24
π/K separation = 9 σ

Experimental results are far from simulated values, but there are reasons:
• Seems to be lower PDE than measured by PDPC previously (needs to be checked)
• Resolution deterioration due to pixel crosstalk
• No tracking (simulation relies on it)
• Probably: focusing aerogel tested gives wider ring than expected

\[S = 2 \frac{R_π - R_K}{(σ_π + σ_K)} \]

\[π/K: \ 3.8σ \ @ \ 6\text{GeV/c} \]
\[μ/π: \ 4.5σ \ @ \ 1\text{GeV/c} \]
Crosstalk between pixels

Crosstalk probability (%) on a tile pixel map
Special run with random trigger

Crosstalk is significant only between pixels of one die
Crosstalk between pixels...

Crosstalk distribution of pixel pairs

~4% crosstalk probability between pixels of one die → ring radius resolution deterioration
Radiation damage: Dark count rate changing

- **5th day of beam**

Partial recovery is observed after annealing for 2 days at 30°C

Breakage: only 4 of 36 tiles failed after 2 weeks and several thermal cycles. DPC modules and tiles was not designed to work routinely at low temperature with frequent thermal cycles. It was just a first test.

Note: radiation dose was not monitored during the experiment.
Conclusion

- Beam test of FARICH prototype with Philips DPC was prepared and successfully realized in a short time scale.
- Cherenkov rings are detected from focusing aerogel with ~14 photoelectrons for relativistic particles.
- Timing resolution of $\sigma_t=48$ ps is achieved for single Cherenkov photons.
- π/K separation obtained for $P=6$ GeV/c is 3.8σ, μ/π separation is 4.5σ for $P=1$ GeV/c.
- Signs of radiation damage are observed that partially recovered by annealing at room temperature.
- Very positive experience of 2 weeks operation of the large and complex setup.
- Tests were continued at electron test beam in BINP in January 2013. Results are coming up.
Thank you for attention!
Die trigger
- 1st photon trigger
- no validation
- TDC timestamp

Die readout
- Number of photons
- Recharge
- Die is ready to detect next photons after 720ns

Hit selection
- Hits are selected in a programmable time window generated from ext. sync signal by tile FPGA

FPGA chain readout
- No additional data reduction
- Bottleneck is data transfer to PC by USB 1.1 link @ 12 Mbit/s

Most significant data loss happen at the die level:
- Dead time 720 ns
- DCR = 100 kcps @ -40°C
- Photon detection efficiency loss of ~7%
DPC is an Integrated “Intelligent” Sensor

DPC3200-22-44
DPC6400-22-44

FPGA
- Clock distribution
- Data collection/concentration
- TDC linearization
- Saturation correction
- Skew correction

Flash
- FPGA firmware
- Configuration
- Inhibit memory maps

Power & Bias

200 MHz ref. clock

Serial configuration interface

Serial Data output (x2)

Detector array
8 x 8 dSiPMs
DPC: Front End Digitization Significantly Reduces Temperature Sensitivity

- 24 ps full-width at half-maximum timing resolution of ps-laser
- Photopeak changes 0.33% per degree C due to changing PDE (values of analog SiPM’s are ranging from 2-8%)
- Time changes 15.3 ps per degree C (TDC + trigger network drift)

0.33% / K
Without bias correction!
DPC: CMOS Integration Enables Active Quenching

Figure 11. Generic schematics of a passive (left) and an active (right) quenching circuit employed at the micro-cell level (the micro-cell is represented by the diode symbol).

Cell layout of Digital SiPM cells: Digital electronics take up only 3-6% of active area.

Digital SiPMs show reduced afterpulsing (0.3%) and crosstalk.

Graphics from Spanoudaki & Levin, Stanford, in: Sensors (10), 2010
DPC: CMOS Integration Allows Active Control of Dark Count Rate (DCR)

- Silicon based light sensors have background noise (dark counts), varying with temperature.
- In digital SiPMs every cell can be addressed individually.
- Cells with high dark counts can be switched off.
- A few cells switched off (1-5%) reduces dark count levels by orders of magnitude.
DPC PDE vs wavelength

DPC3200-22-44
Ring fit LH function

- PDF = gaussian on radius x gaussian on time + background
 \[f(X_i, Y_i, t_i; X_0, Y_0, t_0, R) = \]
 \[\frac{N_{\text{pe}} S_{\text{px}}}{2\pi R} G \left(\sqrt{(X_i - X_0)^2 + (Y_i - Y_0)^2}; R, \sigma_R \right) \times G(t_i; t_0, \sigma_t) + B, \]
 where
 - \(X_i, Y_i, t_i \) – pixel hit position and time
 - \(X_0, Y_0 \) – ring center position,
 \(t_0 \) – mean event time,
 \(R \) – ring radius,
 - \(N_{\text{pe}} \) – mean number of photoelectrons in a ring,
 - \(S_{\text{px}} \) – pixel area,
 - \(\sigma_R, \sigma_t \) – sigmas on radius and time,
 - \(B \) – noise hit probability per pixel and time unit.

- The following function is minimized to fit the ring
 \[-\log \text{LH} = - \sum_{i=1}^{N_h} \log f(X_i, Y_i, t_i; X_0, Y_0, t_0, R) \]
Crosstalk treatment

Let’s assume there are two channels (1 and 2) with independent probabilities to fire P_i^0 and dependent probabilities to fire determined by P_x (crosstalk probability), then:

\[
P_{12} = P_1^0 P_2^0 + (1 - P_1^0) P_2^0 P_x + (1 - P_2^0) P_1^0 P_x \quad \text{– probability that both pixels fire}
\]

\[
P_{\overline{1}2} = (1 - P_1^0) P_2^0 (1 - P_x) \quad \text{– probability that 1^{st} pixel does not fire and 2^{nd} fires}
\]

\[
P_{1\overline{2}} = (1 - P_2^0) P_1^0 (1 - P_x) \quad \text{– probability that 1^{st} pixel fires and 2^{nd} does not fire}
\]

\[
P_{\overline{1}\overline{2}} = (1 - P_1^0)(1 - P_2^0) \quad \text{– probability that both pixels do not fire}
\]

As $P_{12} + P_{\overline{1}2} + P_{1\overline{2}} + P_{\overline{1}\overline{2}} = 1$, there are 3 independent equations and all unknowns (P_1^0, P_2^0, P_x) can be determined from observables ($P_{12}, P_{\overline{1}2}, P_{1\overline{2}}$).

The only pre-assumption that crosstalk probabilities are symmetric, i.e.:

\[
P_{1\rightarrow 2} = P_{2\rightarrow 1} \equiv P_x
\]
Timing resolution (log y-scale)

Hit time w.r.t. fitted event time, ns

- Entries: 531184
- Mean: 0.01497
- RMS: 0.1077
- χ² / ndf: 9.31e+03 / 73
- Bkg: 3.28 ± 0.55
- Const1: 7.82e+04 ± 1.53e+02
- Mean1: -0.00531 ± 0.00007
- Sigma1: 0.0481 ± 0.0001
- Const2: 1.42e+03 ± 1.64e+01
- Mean2: 0.23 ± 0.00
- Sigma2: 0.186 ± 0.001